987 resultados para Eukaryotic Genomes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ability to induce protein expression at will in a cell is a powerful strategy used by scientists to better understand the function of a protein of interest. Various inducible systems have been designed in eukaryotic cells to achieve this goal. Most of them rely on two distinct vectors, one encoding a protein that can regulate transcription by binding a compound X, and one hosting the cDNA encoding the protein of interest placed downstream of promoter sequences that can bind the protein regulated by compound X (e.g., tetracycline, ecdysone). The commercially available systems are not designed to allow cell- or tissue-specific regulated expression. Additionally, although these systems can be used to generate stable clones that can be induced to express a given protein, extensive screening is often required to eliminate the clones that display poor induction or high basal levels. In the present report, we aimed to design a pancreatic beta cell-specific tetracycline-inducible system. Since the classical two-vector based tetracycline-inducible system proved to be unsatisfactory in our hands, a single vector was eventually designed that allowed tight beta cell-specific tetracycline induction in unselected cell populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolution of proteins after whole-genome duplicationGene and genome duplication are considered major mechanisms in the creation of newfunctions in genomes, or in the refinement of networks by the division of function amongmore genes. In animals, the best demonstrated whole genome duplication occurred at theorigin of Teleost fishes. This makes fishes an ideal model to study the consequences ofgenome duplication, particularly since we have a good sampling of genome sequences,abundant functional information, and a very well studied outgroup: the tetrapodes (includinghuman). More specifically, I studied the consequences of duplication on proteins usingevolutionary models to infer adaptive events. I analysed the influence of positive selection invertebrate genes, by contrasting singleton genes and duplicated genes. The conclusion of theanalyses was threefold: (i) positive selection affects diverse phylogenetic branches anddiverse gene categories during vertebrate evolution; (ii) it concerns only a small proportion ofsites (1%-5%); and (iii) whole genome duplication had no detectable impact on theprevalence of this positive selection.I also studied evolution at the amino acid level with different methods to detect functionalshifts (covarion process and constant-but-different process). As in my previous research, Ifound similar numbers of functional shifts between duplicates and between orthologs.The accepted framework for studies of molecular evolution is that orthologs share the samefunction, whereas the function of paralogs diverges. This framework gives a special place togene duplication in evolution, as the main mechanism for generating novelty. With myprevious results showing that duplication and speciation are not so different, we investigatedthe literature to question the evidence for similar or divergent evolution of gene function afterduplication relative to speciation genes. This led us to propose a more rigorous design offuture studies of gene duplication.Finally, based on my automated protocol, we built a database of positive selection invertebrates' genes, Selectome. This database is freely available on the web and will helpfuture evolutionary as well as biochemical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among different species of eukaryotes, the extent and evolutionary significance of horizontal gene transfer remains poorly understood. A newly published study by Friesen and colleagues indicates that a recent gene transfer between two species of fungi has enabled the recipient to rapidly acquire high virulence on wheat. The study highlights a mechanism by which diseases can suddenly emerge, but also brings up the controversial issues of how horizontal gene transfer occurs and whether fungal incompatibility barriers to gene flow are more 'leaky' than was previously thought.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to explore potential alternatives to the production of polyhydroxyalkanoates (PHAs) in bacteria, the enzymes of Alcaligenes eutrophus involved in the synthesis of polyhydroxybutyrate (PHB) have been expressed in the model plant Arabidopsis thaliana. Following the successful production of low amounts of high molecular weight PHB in plants expressing the acetoacetyl-CoA reductase and the PHB synthase in the cytoplasm of Arabidopsis cell, expression of the PHB pathway in the pastids was achieved by modifying the PHB enzymes with plastid targeting signals. This strategy resulted in a significant increase in the formation of PHB in Arabidopsis, with a maximum of 14% of the leaf dry weight . The increase in PHB production is most likely due to the higher flux in the plastids of acetyl-CoA, the precursor for PHB synthesis. A detailed study of metabolic fluxes in Arabidopsis plants producing high levels of PHB could help to determine the potential problems and limitations of PHB synthesis in Arabidopsis and could be useful for optimising strategies for the production of PHB in crop plants. The knowledge on PHB production could also be used for the production of PHAs other than PHB. Apart from PHB, no other PHAs have been produced in an eukaryotic system. Arabidopsis will therefore be used as a model system for the production in eukaryotes of more complex PHAs, such as poly(hydroxybutyrate-co-hydroxyvylerate) or medium-chain-lenght-PHAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Annotations of completely sequenced genomes reveal that nearly half of the genes identified are of unknown function, and that some belong to uncharacterized gene families. To help resolve such issues, information can be obtained from the comparative analysis of homologous genes in model organisms. Results: While characterizing genes from the retinitis pigmentosa locus RP26 at 2q31-q33, we have identified a new gene, ORMDL1, that belongs to a novel gene family comprising three genes in humans (ORMDL1, ORMDL2 and ORMDL3), and homologs in yeast, microsporidia, plants, Drosophila, urochordates and vertebrates. The human genes are expressed ubiquitously in adult and fetal tissues. The Drosophila ORMDL homolog is also expressed throughout embryonic and larval stages, particularly in ectodermally derived tissues. The ORMDL genes encode transmembrane proteins anchored in the endoplasmic reticulum (ER). Double knockout of the two Saccharomyces cerevisiae homologs leads to decreased growth rate and greater sensitivity to tunicamycin and dithiothreitol. Yeast mutants can be rescued by human ORMDL homologs. Conclusions: From protein sequence comparisons we have defined a novel gene family, not previously recognized because of the absence of a characterized functional signature. The sequence conservation of this family from yeast to vertebrates, the maintenance of duplicate copies in different lineages, the ubiquitous pattern of expression in human and Drosophila, the partial functional redundancy of the yeast homologs and phenotypic rescue by the human homologs, strongly support functional conservation. Subcellular localization and the response of yeast mutants to specific agents point to the involvement of ORMDL in protein folding in the ER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order t o elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results: HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD) and ultra violet-visible (UV-Vis) spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT) with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was achieved exclusively by evolutionary modulation of non-cysteine amino acid positions. Conclusion: The Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Hox and ParaHox gene clusters are thought to have resulted from the duplication of a ProtoHox gene cluster early in metazoan evolution. However, the origin and evolution of the other genes belonging to the extended Hox group of homeobox-containing genes, that is, Mox and Evx, remains obscure. We constructed phylogenetic trees with mouse, amphioxus and Drosophila extended Hox and other related Antennapedia-type homeobox gene sequences and analyzed the linkage data available for such genes.Results: We claim that neither Mox nor Evx is a Hox or ParaHox gene. We propose a scenariothat reconciles phylogeny with linkage data, in which an Evx/Mox ancestor gene linked to aProtoHox cluster was involved in a segmental tandem duplication event that generated an arrayof all Hox-like genes, referred to as the `coupled¿ cluster. A chromosomal breakage within thiscluster explains the current composition of the extended Hox cluster (with Evx, Hox and Moxgenes) and the ParaHox cluster.Conclusions: Most studies dealing with the origin and evolution of Hox and ParaHox clustershave not included the Hox-related genes Mox and Evx. Our phylogenetic analyses and theavailable linkage data in mammalian genomes support an evolutionary scenario in which anancestor of Evx and Mox was linked to the ProtoHox cluster, and that a tandem duplication of alarge genomic region early in metazoan evolution generated the Hox and ParaHox clusters, plusthe cluster-neighbors Evx and Mox. The large `coupled¿ Hox-like cluster EvxHox/MoxParaHox wassubsequently broken, thus grouping the Mox and Evx genes to the Hox clusters, and isolating theParaHox cluster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors. RESULTS: Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level. CONCLUSIONS: Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Why mating types exist at all is subject to much debate. Among hypotheses, mating types evolved to control organelle transmission during sexual reproduction, or to prevent inbreeding or same-clone mating. Here I review data from a diversity of taxa (including ciliates, algae, slime molds, ascomycetes, and basidiomycetes) to show that the structure and function of mating types run counter the above hypotheses. I argue instead for a key role in triggering developmental switches. Genomes must fulfill a diversity of alternative programs along the sexual cycle. As a haploid gametophyte, an individual may grow vegetatively (through haploid mitoses), or initiate gametogenesis and mating. As a diploid sporophyte, similarly, it may grow vegetatively (through diploid mitoses) or initiate meiosis and sporulation. Only diploid sporophytes (and not haploid gametophytes) should switch on the meiotic program. Similarly, only haploid gametophytes (not sporophytes) should switch on gametogenesis and mating. And they should only do so when other gametophytes are ready to do the same in the neighborhood. As argued here, mating types have evolved primarily to switch on the right program at the right moment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(¿)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Azoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur in Candida albicans principally by overexpression of multidrug transporter gene CDR1, CDR2, or MDR1 or by overexpression of ERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs) TAC1 (involved in the control of CDR1 and CDR2), MRR1 (involved in the control of MDR1), and UPC2 (involved in the control of ERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial to C. albicans survival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence of C. albicans in the absence of the selective drug pressure. In this work, the effect of GOF mutations on C. albicans virulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neither TAC1 nor MRR1 GOF mutations had a significant effect on C. albicans virulence. In contrast, the presence of two hyperactive UPC2 alleles in C. albicans resulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate with UPC2 hyperactive alleles was observed in competition experiments with the wild type in vivo but not in vitro. Interestingly, UPC2 hyperactivity delayed filamentation of C. albicans after phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining the UPC2 GOF mutation with another hyperactive TF did not compensate for the negative effect of UPC2 on virulence. In conclusion, among the major TFs involved in azole resistance, only UPC2 had a negative impact on virulence and fitness, which may therefore have consequences for the epidemiology of antifungal resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the eukaryotic cell cycle, there are major control points in late G2 to determine the timing of the initiation of mitosis, and in late G1, regulating entry into S phase. In yeasts, this latter control is called start. Traverse of the start control and progression to S phase is accompanied by an increase in the expression of some of the genes whose products are required for DNA synthesis. In Saccharomyces cerevisiae, the coordinate expression of these genes in late G1 is dependent on a cis-acting sequence element called the MluI cell cycle box (MCB). A transcription factor called DSC-1 binds these elements and mediates cell cycle regulated transcription, though it is unclear whether this is by cell cycle-dependent changes in its activity. A DSC-1-like factor has also been identified in the fission yeast S.pombe. This is composed of at least the products of the cdc10 and sct1/res1 genes, and binds to the promoters of genes whose expression increases prior to S phase. We demonstrate that p85cdc10 is a nuclear protein and that the activity of the S.pombe DSC-1 factor varies through the cell cycle; it is high in cells that have passed start, decreases at the time of anaphase, remains low during the pre-start phase of G1 and increases at the time of the next S phase. We also show that the reactivation in late G1 is dependent on the G1 form of p34cdc2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.