953 resultados para Estuarine fishes
Resumo:
Understanding habitat selection and movement remains a key question in behavioral ecology. Yet, obtaining a sufficiently high spatiotemporal resolution of the movement paths of organisms remains a major challenge, despite recent technological advances. Observing fine-scale movement and habitat choice decisions in the field can prove to be difficult and expensive, particularly in expansive habitats such as wetlands. We describe the application of passive integrated transponder (PIT) systems to field enclosures for tracking detailed fish behaviors in an experimental setting. PIT systems have been applied to habitats with clear passageways, at fixed locations or in controlled laboratory and mesocosm settings, but their use in unconfined habitats and field-based experimental setups remains limited. In an Everglades enclosure, we continuously tracked the movement and habitat use of PIT-tagged centrarchids across three habitats of varying depth and complexity using multiple flatbed antennas for 14 days. Fish used all three habitats, with marked species-specific diel movement patterns across habitats, and short-lived movements that would be likely missed by other tracking techniques. Findings suggest that the application of PIT systems to field enclosures can be an insightful approach for gaining continuous, undisturbed and detailed movement data in unconfined habitats, and for experimentally manipulating both internal and external drivers of these behaviors.
Resumo:
The frequency of extreme environmental events is predicted to increase in the future. Understanding the short- and long-term impacts of these extreme events on large-bodied predators will provide insight into the spatial and temporal scales at which acute environmental disturbances in top-down processes may persist within and across ecosystems. Here, we use long-term studies of movements and age structure of an estuarine top predator—juvenile bull sharks Carcharhinus leucas—to identify the effects of an extreme ‘cold snap’ from 2 to 13 January 2010 over short (weeks) to intermediate (months) time scales. Juvenile bull sharks are typically year-round residents of the Shark River Estuary until they reach 3 to 5 yr of age. However, acoustic telemetry revealed that almost all sharks either permanently left the system or died during the cold snap. For 116 d after the cold snap, no sharks were detected in the system with telemetry or captured during longline sampling. Once sharks returned, both the size structure and abundance of the individuals present in the nursery had changed considerably. During 2010, individual longlines were 70% less likely to capture any sharks, and catch rates on successful longlines were 40% lower than during 2006−2009. Also, all sharks caught after the cold snap were young-of-the-year or neonates, suggesting that the majority of sharks in the estuary were new recruits and several cohorts had been largely lost from the nursery. The longer-term impacts of this change in bull shark abundance to the trophic dynamics of the estuary and the importance of episodic disturbances to bull shark population dynamics will require continued monitoring, but are of considerable interest because of the ecological roles of bull sharks within coastal estuaries and oceans.
Resumo:
Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fishe were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegatus and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Data on age, total length, total weight, gonad weight, gonadosomatic index (GSI), sex and reproductive stage for ice fish specimens collected along the sea ice gradient in McMurdo Sound, Antarctica. Species on which data are provided are; Trematomus bernacchii, Trematomus bernacchii, Pagothenia borchgrevinki and Trematomus newnesi. Location and year of collection is also included for each fish.
Resumo:
Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.
Resumo:
Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.
Resumo:
CMFRI,
Resumo:
Bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) in the estuarine surface microlayer (SML) of the Ria de Aveiro, Portugal—which is chronically polluted with oil hydrocarbons (OH)—were isolated and characterized; Pseudomonas was dominant among the PAH-degrading bacteria. Screening for PAH dioxygenase genes detected almost identical nahAc genes (encoding the alpha subunits of naphthalene dioxygenase) in 2 phylogenetically distinct isolates: Pseudomonas sp. and an unknown species of the family Enterobacteriaceae; this suggested that horizontal transfer of nah genes might be involved in PAH degradation in the SML. We also investigated the effect of PAH contamination on the spatial variability of the bacterioneuston along a gradient of pollution in the estuarine system of the Ria de Aveiro. Culture-independent techniques—fluorescence in situ hy - bridization (FISH) and denaturing-gradient gel electrophoresis (DGGE)—revealed a similar structure among the bacterioneuston communities along the estuary. In contrast, we detected differences in the relative abundance and diversity of organisms of the Gammaproteobacteria, including those of the genus Pseudomonas (which belongs to the Gammaproteobacteria). This is the first insight into the hydrocarbonoclastic bacterial communities in the SML of an estuarine area polluted with hydrocarbons. Our findings highlight the importance of SML-adapted hydrocarbonoclastic bacterioneuston as a potential source of new PAH-degrading bacteria (including new pseudomonads) with potential use in the bioremediation of hydrocarbon-polluted ecosystems.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Intertidal flats of the estuarine macro-intertidal Baie des Veys (France) were investigated to identify spatial features of sediment and microphytobenthos (MPB) in April 2003. Gradients occurred within the domain, and patches were identified close to vegetated areas or within the oyster-farming areas where calm physical conditions and biodeposition altered the sediment and MPB landscapes. Spatial patterns of chl a content were explained primarily by the influence of sediment features, while bed elevation and compaction brought only minor insights into MPB distribution regulation. The smaller size of MPB patches compared to silt patches revealed the interplay between physical structure defining the sediment landscape, the biotic patches that they contain, and that median grain-size is the most important parameter in explaining the spatial pattern of MPB. Small-scale temporal dynamics of sediment chl a content and grain-size distribution were surveyed in parallel during 2 periods of 14 d to detect tidal and seasonal variations. Our results showed a weak relationship between mud fraction and MPB biomass in March, and this relationship fully disappeared in July. Tidal exposure was the most important parameter in explaining the summer temporal dynamics of MPB. This study reveals the general importance of bed elevation and tidal exposure in muddy habitats and that silt content was a prime governing physical factor in winter. Biostabilisation processes seemed to behave only as secondary factors that could only amplify the initial silt accumulation in summer rather than primary factors explaining spatial or long-term trends of sediment changes.
Resumo:
Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land-to-sea gradients. SOC stocks in natural marine mangroves (271–572 Mg ha-1 m-1 were much higher than under estuarine mangroves (100–315 Mg ha-1 m-1 with a further decrease caused by degradation to 80–132 Mg ha-1 m-1. Soils differed in C/N ratio (marine: 29–64; estuarine: 9–28), δ15N (marine: 0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant-available P (marine: 2.3–6.3 mg kg-1; estuarine: 0.16–1.8 mg kg-1). We found N and P supply of sea-oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land-to-sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large-scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes.