984 resultados para Epitopes, T-Lymphocyte
Resumo:
The design of malarial vaccine based on the circumsporozoite (CS) protein, a majuor surface antigen of the sporozoite stage of the malaria parasite, requires the identification of T and B cell epitopes for inclusion in recombinant or synthetic vaccine candidates. We have investigated the specificity and function of a series of T cell clones, derived from volunteers immunized with Plasmodium falciparum sporozoites in an effort to identify relevant epitopes in the immune response to the pre-erythrocytic stages of the parasite. CD4+ T cell clones were obtained wich specifically recognized a repetitive epitope located in the 5'repeat region of the CS protein. This epitope, when conjugated to the 3'repeat region in a synthetic MAPs construct, induced high titers of antisporozoite antibodies in C57B1 mice. A second T cell epitope, which mapped to aa 326-345 of the carboxy terminal, was recognized by lytic, as well as non-lytic, CD4+ T cells derived from the sporozoite-immunized volunteers. The demonstration of CD4+ CTL in the volunteers, and the recent studies inthe rodent model (Renia et al., 1991; Tsuji et al., 1990), suggested that CS-specific CD4+ T cells, in addition to their indirect role as helper cells in the induction of antibody and CD8 + effector cells, may also play a direct role in protection against sporozoite challenge by targeting EEF within the liver.
Resumo:
In view of the recent demonstration that antibodies that are protective agains Plasmodium falciparum malaria may act in collaboration with blood monocytes, we have investigated the isotype content of sera from individuals with defined clinical states of resistance or susceptibility to malaria. Profound differences in the distribution of each Ig subclass and particulary in the ratio of cytophilic versus noncytophilic antibodies were found. In protected subjects, two cytophilic isotypes, IgG1 and IgG3 were found to predominate. In non-protected subjects, i.e. children and primary attack adults, three different situations were encountered: a) an imbalance in which IgG2, a non-cytophilic class, predominated (mostly seen in primary attacks); b) imbalance in which mostly IgM antibodies predominated (a frequent event in children) or c) less frequently, an overall low level of antimalarial antibodies. Of 33 non immune subjects studied all, except one, had one of the above defects. The function of total Ig presenting such an isotype imbalance was studied in vitro in Antibody-Dependent -Cellular-Inhibition assays. Not only did IgG from protected subjects cooperate efficiently with blood monocytes, whilst IgG from non-protected groups did not, but moreover the latter inhibit the in vitro effect of the former: in competition assays whole IgG from primary attack cases with increased IgG2 content, competed with IgG from immune adults, thus suggesting that non-protected subjects had antibodies to epitopes critical for protection, but that these antibodies are non functional.
Resumo:
Studies in mice have shown that immunity to malaria sporozoites is mediated primarily by citotoxic T lymphocytes (CTL) specific for epitopes within the circumsporozoite (CS) protein. Humans, had never been shown to generate CTL against any malaria or other parasite protein. The design of a sub-unit vaccine for humans ralies on the epitopes recognized by CTL being identified and polymorphisms therein being defined. We have developed a novel technique using an entire series of overlapping synthetic peptides to define the epitopes of the Plasmodium falciparum CS protein recognized by human CTL and have analyzed the sequence variation of the protein with respect to the identified CTL epitopic domain. We have demonstrated that some humans can indeed generate CTL. against the P. falciparum CS protein. Furthermore, the extent of variation observed for the CTL recognition domain is finite and the combination of peptides necessary for inclusion in a polyvalent vaccine may be small. If ways can be found to increase immune responsiveness, then a vaccine designed to stimulate CS protein-specific CTL activity may prevent malaria.
Resumo:
The dysregulation of the immune response by malaria parasite has been considered as a possible constraint to the effectiveness of malaria vaccination. In spite of the important role interleukin-I (IL-1) in malaria are lacking. We found that only 2 out of 35 subjectswith acute malaria showed increased levels of serum IL-1 alpha by enzyme immunoassay. To assess whether IL-1 could interfere with T- lymphocyte responses, blood mononuclear cells from patients infected with Plasmodium falciparum, P. vivax, or healthy subjects were cultured with phytohemagglutinin, and lymphocyte proliferation measured 72h later by 3H-thymidine incorporation. Our data showed that T-lymphocyte responses are depressed both in P. falciparum (10,500 ñ 2,900) and P. vivax malaria (13,000 ñ 3,300), as compared to that of healthy individuals (27,000 ñ 3,000). Addition of IL-1 partially reserved depression of malaria lymphocytes, but had no effect on normal cells. On the other hand, T-lymphocytes from malaria infected-subjects presented a minimal decrease in proliferation, when cultured in the presence of exogenous PGE2. These data indicate the occurrence of two defects of immunoregulation in malaria: a deficiency of IL-1 production by monocytes/macrophages, and an increased resistance of lymphocytes to the antiproliferative effect of PGE2.
Resumo:
IL-2 plays a pivotal role in regulating the adaptive immune system by controlling the survival and proliferation of regulatory T (Treg) cells, which are required for the maintenance of immune tolerance. Moreover, IL-2 is implicated in the differentiation and homeostasis of effector T-cell subsets, including T(H)1, T(H)2, T(H)17, and memory CD8+ T cells. The IL-2 receptor is composed of 3 distinct subunits, namely the alpha (CD25), beta (CD122), and gamma (gammac) chains. Of crucial importance for the delivery of IL-2 signals to Treg cells is the expression of CD25, which, along with CD122 and gammac, confers high affinity binding to IL-2. Notably, recent findings suggest a novel role for CD25, whereby CD25 molecules on Treg cells and possibly other cells are capable of influencing T-cell homeostasis by means of IL-2 deprivation. This review explores these findings and integrates them into our current understanding of T-cell homeostasis.
Resumo:
This paper is written in the context of our changing preception of the immunological system as a system with possible biological roles exceding the prevailung view of a system concerned principally with the defense against external pathogens. The view discussed here relates the immunological system inextricably to the metabolism of iron, the circulation of the blood and the resolution of the evolutionary paradox created by oxygen and iron. Indirect evidence for this inextricable relationship between the two systems can be derived from the discrepancy between the theoretical quasi-impossibility of the existence of an iron deficiency state in the adult and the reality of the WHO numbers of people in the world with iron deficiency anemia. With mounting evidence that TNF, IL-1, and T lymphocyte cytokines affect hemopoieisis and iron metabolism it is possible that the reported discrepancy is a reflection of that inextricable interdependence between the two systems in the face of infection. Further direct evidence for a relationship between T cell subset numbers and iron metabolism is presented from the results of a study of T cell populations in patients with hereditary hemochromatosis. The recent finding of a correlation between low CD8+ lymphocite numbers, liver demage associated with HCVpositivity and severity of iron overload in B-thalassemia major patients (umpublished data of RW Grandy; P. Giardina, M. Hilgartner) concludes this review.
Resumo:
BACKGROUND: Antiretroviral compounds have been predominantly studied in human immunodeficiency virus type 1 (HIV-1) subtype B, but only ~10% of infections worldwide are caused by this subtype. The analysis of the impact of different HIV subtypes on treatment outcome is important. METHODS: The effect of HIV-1 subtype B and non-B on the time to virological failure while taking combination antiretroviral therapy (cART) was analyzed. Other studies that have addressed this question were limited by the strong correlation between subtype and ethnicity. Our analysis was restricted to white patients from the Swiss HIV Cohort Study who started cART between 1996 and 2009. Cox regression models were performed; adjusted for age, sex, transmission category, first cART, baseline CD4 cell counts, and HIV RNA levels; and stratified for previous mono/dual nucleoside reverse-transcriptase inhibitor treatment. RESULTS: Included in our study were 4729 patients infected with subtype B and 539 with non-B subtypes. The most prevalent non-B subtypes were CRF02_AG (23.8%), A (23.4%), C (12.8%), and CRF01_AE (12.6%). The incidence of virological failure was higher in patients with subtype B (4.3 failures/100 person-years; 95% confidence interval [CI], 4.0-4.5]) compared with non-B (1.8 failures/100 person-years; 95% CI, 1.4-2.4). Cox regression models confirmed that patients infected with non-B subtypes had a lower risk of virological failure than those infected with subtype B (univariable hazard ratio [HR], 0.39 [95% CI, .30-.52; P < .001]; multivariable HR, 0.68 [95% CI, .51-.91; P = .009]). In particular, subtypes A and CRF02_AG revealed improved outcomes (multivariable HR, 0.54 [95% CI, .29-.98] and 0.39 [95% CI, .19-.79], respectively). CONCLUSIONS: Improved virological outcomes among patients infected with non-B subtypes invalidate concerns that these individuals are at a disadvantage because drugs have been designed primarily for subtype B infections.
Resumo:
The observation that murine thymocytes increase their proliferation to interleukin 1 (IL-1) in the presence of phytohemagglutinin (PHA) when pre-incubated with interleukin 2 (IL-2) allowed the introduction of a modified assay for the measurement of IL-1 or the search of thymocyte-inducing proliferative activities in biological samples. Pre-incubation of thymocytes for 24 hr with 50 u/ml IL-2, followed by washings, elicited their maximal response to IL-1 in the usual lymphocyte activating factor (LAF) assay. This suggests that sequential events lead to thymocyte activation. The responsiveness is three to five fold greater than, and the total time of assay is the same as that of the LAF assay. Interestingly, pre-incubation with IL-2 renders thymocytes more sensitive than responsive to crude monocyte conditioned media. The use of the MTT colorimetric method for the assessment of thymocyte proliferation, and of the lectin jacalin as a co-mitogen are suggested as alternatives to be used in co-stimulatory assays.
Resumo:
The paracaspase MALT1 is an Arg-specific protease that cleaves multiple substrates to promote lymphocyte proliferation and survival. The catalytic activity of MALT1 is normally tightly regulated by antigen receptor triggering, which promotes MALT1 activation by its inducible monoubiquitination-dependent dimerization. Constitutive MALT1 activity is a hallmark of specific subsets of B-cell lymphomas, which are characterized by chromosomal translocations or point mutations that activate MALT1 or its upstream regulators. Recent findings suggest that such lymphomas may be sensitive to treatment with MALT1 inhibitors. Here we review recent progress in the understanding of MALT1 function and regulation, and the development of small molecule MALT1 inhibitors for therapeutic applications.
Resumo:
CONTEXT: New trial data and drug regimens that have become available in the last 2 years warrant an update to guidelines for antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected adults in resource-rich settings. OBJECTIVE: To provide current recommendations for the treatment of adult HIV infection with ART and use of laboratory-monitoring tools. Guidelines include when to start therapy and with what drugs, monitoring for response and toxic effects, special considerations in therapy, and managing antiretroviral failure. DATA SOURCES, STUDY SELECTION, AND DATA EXTRACTION: Data that had been published or presented in abstract form at scientific conferences in the past 2 years were systematically searched and reviewed by an International Antiviral Society-USA panel. The panel reviewed available evidence and formed recommendations by full panel consensus. DATA SYNTHESIS: Treatment is recommended for all adults with HIV infection; the strength of the recommendation and the quality of the evidence increase with decreasing CD4 cell count and the presence of certain concurrent conditions. Recommended initial regimens include 2 nucleoside reverse transcriptase inhibitors (tenofovir/emtricitabine or abacavir/lamivudine) plus a nonnucleoside reverse transcriptase inhibitor (efavirenz), a ritonavir-boosted protease inhibitor (atazanavir or darunavir), or an integrase strand transfer inhibitor (raltegravir). Alternatives in each class are recommended for patients with or at risk of certain concurrent conditions. CD4 cell count and HIV-1 RNA level should be monitored, as should engagement in care, ART adherence, HIV drug resistance, and quality-of-care indicators. Reasons for regimen switching include virologic, immunologic, or clinical failure and drug toxicity or intolerance. Confirmed treatment failure should be addressed promptly and multiple factors considered. CONCLUSION: New recommendations for HIV patient care include offering ART to all patients regardless of CD4 cell count, changes in therapeutic options, and modifications in the timing and choice of ART in the setting of opportunistic illnesses such as cryptococcal disease and tuberculosis.
Resumo:
The prevalence of hepatitis B and C infection has been determined in a seroepidemiological survey among blood donors from the south of Brazil (Florianópolis, State of Santa Catarina). These markers has also been correlated with the levels of alanine aminotransferase (ALT), a surrogate marker to prevent post-transfusion hepatitis. Sera from 5000 donors were randomly collected in the period of April to November 1991. The prevalences of HBsAg, anti-HBs and anti-HBc were respectively 0.78, 7.02 and 13.98. The anti-HCV prevalence after confirmation testing with line immunoassay (LIA), was 1.14. Normal values of ALT ( < = 32 U/ml) were found in 59.78, values slightly above the mean (ALT between 32-70 U/ml) in 37.74 and high values of ALT ( > = 70 U/ml) in 2.48. The positivity of anti-HCV antibodies increased with the elevation of ALT levels. This correlation was not observed in relation to HBsAg. There exists a diversity in the recognition of HCV epitopes among HCV positive donors. Via the confirmation test used, we could observe that 94.7 of donors recognize the structural core antigen. Besides that, we observed that 5.26 of the HCV reactive sera recognized only epitopes located in the NS4 and/or NS5 region, indicating the importance of these epitopes for the improvement of assays.
Resumo:
The proteasome plays a crucial role in the proteolytic processing of antigens presented to T cells in the context of major histocompatibility complex class I molecules. However, the rules governing the specificity of cleavage sites are still largely unknown. We have previously shown that a cytolytic T lymphocyte-defined antigenic peptide derived from the MAGE-3 tumor-associated antigen (MAGE-3(271-279), FLWGPRALV in one-letter code) is not presented at the surface of melanoma cell lines expressing the MAGE-3 protein. By using purified proteasome and MAGE-3(271-279) peptides extended at the C terminus by 6 amino acids, we identified predominant cleavages after residues 278 and 280 but no detectable cleavage after residue Val(279), the C terminus of the antigenic peptide. In the present study, we have investigated the influence of Pro(275), Leu(278), and Glu(280) on the proteasomal digestion of MAGE-3(271-285) substituted at these positions. We show that positions 278 and 280 are major proteasomal cleavage sites because they tolerate most amino acid substitutions. In contrast, the peptide bond after Val(279) is a minor cleavage site, influenced by both distal and proximal amino acid residues.
Resumo:
Mycophenolic acid, a selective inhibitor of the de novo synthesis of guanosine nucleotides in T and B lymphocytes, has been proposed to inhibit human immunodeficiency virus (HIV) replication in vitro by depleting the substrate (guanosine nucleotides) for reverse transcriptase. Here we show that mycophenolic acid induced apoptosis and cell death in a large proportion of activated CD4+ T cells, thus indicating that it may inhibit HIV infection in vitro by both virological mechanisms and immunological mechanisms (depletion of the pool of activated CD4+ T lymphocytes). Administration of mycophenolate mophetil, the ester derivate of mycophenolic acid, to HIV-infected subjects treated with anti-retroviral therapy and with undetectable viremia resulted in the reduction of the number of dividing CD4 + and CD8+ T cells and in the inhibition of virus isolation from purified CD4+ T-cell populations. Based on these results, the potential use of mycophenolate mophetil in the treatment of HIV infection deserves further investigation in controlled clinical trials.
Resumo:
NK T cells produce cytokines when their semi-invariant TCR engages glycolipids associated with CD1d. The physiological consequences of NKT cell activation remain controversial, although they have been implicated in control of autoimmunity, parasites and tumors. We show here that specific activation of NKT cells in liver and spleen leads to a rapid induction of extensive NK cell proliferation and cytotoxicity. This NK cell activation is dependent, at least in part, on IFN-gamma production by NKT cells and IL-12 production by antigen-presenting cells. Remarkably, activation of NK cells by NKT cells is highly selective, since bystander T and B lymphocytes show transient expression of activation markers but almost no proliferation. Collectively our data suggest that CD1d-dependent NKT cells regulate innate immunity by sampling blood-borne glycolipid antigens and rapidly activating NK cells.
Resumo:
We have prepared transgenic mice whose T cells constitutively express a chimeric receptor combining extracellular human IL-4R and intracellular IL-2Rbeta segments. This receptor can transmit IL-2/IL-15-like signals in response to human, but not mouse, IL-4. We used these animals to explore to what extent functional IL-2R/IL-15R expression controls the capacity of T cells to proliferate in response to IL-2/IL-15-like signals. After activation with Con A, naive transgenic CD8+ and CD4+ T cells respond to human IL-4 as well as to IL-2. Without prior activation, they failed to proliferate in response to human IL-4, although human IL-4 did prolong their survival. Thus, IL-2-induced proliferation of activated T cells requires at least one other Ag-induced change apart from the induction of a functional IL-2R. However, a fraction of CD8+CD44high T cells proliferate in human IL-4 without antigenic stimulation or syngeneic feeder cells. In contrast, CD4+CD44high T cells are not constitutively responsive to human IL-4. We conclude that although all transgenic T cells express a functional chimeric receptor, only some CD8+CD44high T cells contain all molecules required for entry into the cell cycle in response to human IL-4 or IL-15.