888 resultados para Epithelial to mesenchymal transition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic control of flowering time has been addressed by many quantitative trait locus (QTL) studies. A survey of the results from 29 independent studies reporting information on 441 QTLs led to the production of a QTL consensus map, which enabled the identification of 59 chromosome regions distributed on all chromosomes and shown to be frequently involved in the genetic control of flowering time and related traits. One of the major QTLs for flowering time, the Vegetative to generative transition 1 (Vgt1) locus , corresponds to an upstream (70 kb) non-coding regulatory element of ZmRap2.7, a repressor of flowering. A transposon (MITE) insertion was identified as a major allelic difference within Vgt1. One of the hypotheses is that Vgt1 might function by modifying ZmRap2.7 chromatin through an epigenetic mechanism. Therefore, the methylation state at Vgt1 was investigated using an approach that combines digestion with McrBc, an endonuclease that acts upon methylated DNA, and quantitative PCR. The analyses were performed on genomic DNA from leaves of six different maize lines at four stages of development. The results showed a trend of reduction of methylation from the first to the last stage with the exception of a short genomic region flanking the MITE insertion, which showed a constant and very dense methylation throughout leaf development and for both alleles. Preliminary results from bisulfite sequencing of a small portion of Vgt1 revealed differential methylation of a single cytosine residue between the two alleles. ZmRap2.7 expression was assayed in the four developmental stages afore mentioned for the six genotypes, in order to establish a link between methylation at Vgt1 and ZmRap2.7 transcription. To assess the role of Vgt1 as a transcriptional enhancer, two reporter vectors for stable transformation of plants have been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the course of this work the effect of metal substitution on the structural and magnetic properties of the double perovskites Sr2MM’O6 (M = Fe, substituted by Cr, Zn and Ga; M’ = Re, substituted by Sb) was explored by means of X-ray diffraction, magnetic measurements, band structure calculations, Mößbauer spectroscopy and conductivity measurements. The focus of this study was the determination of (i) the kind and structural boundary conditions of the magnetic interaction between the M and M’ cations and (ii) the conditions for the principal application of double perovskites as spintronic materials by means of the band model approach. Strong correlations between the electronic, structural and magnetic properties have been found during the study of the double perovskites Sr2Fe1-xMxReO6 (0 < x < 1, M = Zn, Cr). The interplay between van Hove-singularity and Fermi level plays a crucial role for the magnetic properties. Substitution of Fe by Cr in Sr2FeReO6 leads to a non-monotonic behaviour of the saturation magnetization (MS) and an enhancement for substitution levels up to 10 %. The Curie temperatures (TC) monotonically increase from 401 to 616 K. In contrast, Zn substitution leads to a continuous decrease of MS and TC. The diamagnetic dilution of the Fe-sublattice by Zn leads to a transition from an itinerant ferrimagnetic to a localized ferromagnetic material. Thus, Zn substitution inhibits the long-range ferromagnetic interaction within the Fe-sublattice and preserves the long-range ferromagnetic interaction within the Re-sublattice. Superimposed on the electronic effects is the structural influence which can be explained by size effects modelled by the tolerance factor t. In the case of Cr substitution, a tetragonal – cubic transformation for x > 0.4 is observed. For Zn substituted samples the tetragonal distortion linearly increases with increasing Zn content. In order to elucidate the nature of the magnetic interaction between the M and M’ cations, Fe and Re were substituted by the valence invariant main group metals Ga and Sb, respectively. X-ray diffraction reveals Sr2FeRe1-xSbxO6 (0 < x < 0.9) to crystallize without antisite disorder in the tetragonal distorted perovskite structure (space group I4/mmm). The ferrimagnetic behaviour of the parent compound Sr2FeReO6 changes to antiferromagnetic upon Sb substitution as determined by magnetic susceptibility measurements. Samples up to a doping level of 0.3 are ferrimagnetic, while Sb contents higher than 0.6 result in an overall antiferromagnetic behaviour. 57Fe Mößbauer results show a coexistence of ferri- and antiferromagnetic clusters within the same perovskite-type crystal structure in the Sb substitution range 0.3 < x < 0.8, whereas Sr2FeReO6 and Sr2FeRe0.9Sb0.1O6 are “purely” ferrimagnetic and Sr2FeRe0.1Sb0.9O6 contains antiferromagnetically ordered Fe sites only. Consequently, a replacement of the Re atoms by a nonmagnetic main group element such as Sb blocks the double exchange pathways Fe–O–Re(Sb)–O–Fe along the crystallographic axis of the perovskite unit cell and destroys the itinerant magnetism of the parent compound. The structural and magnetic characterization of Sr2Fe1-xGaxReO6 (0 < x < 0.7) exhibit a Ga/Re antisite disorder which is unexpected because the parent compound Sr2FeReO6 shows no Fe/Re antisite disorder. This antisite disorder strongly depends on the Ga content of the sample. Although the X-ray data do not hint at a phase separation, sample inhomogeneities caused by a demixing are observed by a combination of magnetic characterization and Mößbauer spectroscopy. The 57Fe Mößbauer data suggest the formation of two types of clusters, ferrimagnetic Fe- and paramagnetic Ga-based ones. Below 20 % Ga content, Ga statistically dilutes the Fe–O–Re–O–Fe double exchange pathways. Cluster formation begins at x = 0.2, for 0.2 < x < 0.4 the paramagnetic Ga-based clusters do not contain any Fe. Fe containing Ga-based clusters which can be detected by Mößbauer spectroscopy firstly appear for x = 0.4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro svolto in questa tesi si propone di valutare la variabilità della composizione corporea nell’infanzia e nell’adolescenza, con particolare attenzione alla transizione dalla prima alla seconda, in relazione allo stato nutrizionale ed agli stili di vita. Lo studio è stato condotto eseguendo misure antropometriche presso scuole primarie e secondarie di Bologna. Sono stati analizzati inoltre dati acquisiti a partire dal 2004. Il campione analizzato comprende 3546 soggetti di età compresa tra 6 anni e 14 anni. In particolare sono state analizzate le principali misurazioni utili per il calcolo della composizione corporea, evidenziando i parametri antropometrici principali quali BMI, circonferenza vita, WHR, %F e FFM. Questi caratteri sono stati quindi messi in relazione con le informazioni inerenti l’attività sportiva extrascolastica e gli stili di vita dei soggetti esaminati. L’analisi trasversale delle principali caratteristiche antropometriche ha fornito un interessante panorama della situazione italiana e del nord Italia; lo studio longitudinale delle variabili antropometriche permette di ottenere un quadro aggiornato dei principali incrementi delle misure corporee. La valutazione della variabilità della composizione corporea in relazione all’attività sportiva e allo stile di vita durante il processo di accrescimento ha indicato come abitudini sane e propensione all’attività motoria sono sicuramente in grado di apportare miglioramenti nella modificazione della composizione corporea nel processo evolutivo specialmente se somministrate con modalità adeguate all’età e alle esigenze individuali. Questi aspetti sono certamente rilevanti e complessi, sarebbe infatti interessante in prospettiva futura riuscire ad indagare ancora più dettagliatamente sull’interazione tra i fattori che determinano e modificano la composizione corporea in un periodo della vita così particolare come la transizione dall’infanzia all’adolescenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der erste Teil der vorliegenden Dissertation befasst sich mit der Untersuchung der perturbativen Unitarität im Komplexe-Masse-Renormierungsschema (CMS). Zu diesem Zweck wird eine Methode zur Berechnung der Imaginärteile von Einschleifenintegralen mit komplexen Massenparametern vorgestellt, die im Grenzfall stabiler Teilchen auf die herkömmlichen Cutkosky-Formeln führt. Anhand einer Modell-Lagrangedichte für die Wechselwirkung eines schweren Vektorbosons mit einem leichten Fermion wird demonstriert, dass durch Anwendung des CMS die Unitarität der zugrunde liegenden S-Matrix im störungstheoretischen Sinne erfüllt bleibt, sofern die renormierte Kopplungskonstante reell gewählt wird. Der zweite Teil der Arbeit beschäftigt sich mit verschiedenen Anwendungen des CMS in chiraler effektiver Feldtheorie (EFT). Im Einzelnen werden Masse und Breite der Deltaresonanz, die elastischen elektromagnetischen Formfaktoren der Roperresonanz, die elektromagnetischen Formfaktoren des Übergangs vom Nukleon zur Roperresonanz sowie Pion-Nukleon-Streuung und Photo- und Elektropionproduktion für Schwerpunktsenergien im Bereich der Roperresonanz berechnet. Die Wahl passender Renormierungsbedingungen ermöglicht das Aufstellen eines konsistenten chiralen Zählschemas für EFT in Anwesenheit verschiedener resonanter Freiheitsgrade, so dass die aufgeführten Prozesse in Form einer systematischen Entwicklung nach kleinen Parametern untersucht werden können. Die hier erzielten Resultate können für Extrapolationen von entsprechenden Gitter-QCD-Simulationen zum physikalischen Wert der Pionmasse genutzt werden. Deshalb wird neben der Abhängigkeit der Formfaktoren vom quadrierten Impulsübertrag auch die Pionmassenabhängigkeit des magnetischen Moments und der elektromagnetischen Radien der Roperresonanz untersucht. Im Rahmen der Pion-Nukleon-Streuung und der Photo- und Elektropionproduktion werden eine Partialwellenanalyse und eine Multipolzerlegung durchgeführt, wobei die P11-Partialwelle sowie die Multipole M1- und S1- mittels nichtlinearer Regression an empirische Daten angepasst werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, different complex colloids were prepared by the process of solvent evaporation from emulsion droplets (SEED). The term “complex” is used to include both an addressable functionality as well as the heterogeneous nature of the colloids.Firstly, as the SEED process was used throughout the thesis, its mechanism especially in regard to coalescence was investigated,. A wide variety of different techniques was employed to study the coalescence of nanodroplets during the evaporation of the solvent. Techniques such as DLS or FCS turned out not to be suitable methods to determine droplet coalescence because of their dependence on dilution. Thus, other methods were developed. TEM measurements were conducted on mixed polymeric emulsions with the results pointing to an absence of coalescence. However, these results were not quantifiable. FRET measurements on mixed polymeric emulsions also indicated an absence of coalescence. Again the results were not quantifiable. The amount of coalescence taking place was then quantified by the application of DC-FCCS. This method also allowed for measuring coalescence in other processes such as the miniemulsion polymerization or the polycondensation reaction on the interface of the droplets. By simulations it was shown that coalescence is not responsible for the usually observed broad size distribution of the produced particles. Therefore, the process itself, especially the emulsification step, needs to be improved to generate monodisperse colloids.rnThe Janus morphology is probably the best known among the different complex morphologies of nanoparticles. With the help of functional polymers, it was possible to marry click-chemistry to Janus particles. A large library of functional polymers was prepared by copolymerization and subsequent post-functionalization or by ATRP. The polymers were then used to generate Janus particles by the SEED process. Both dually functionalized Janus particles and particles with one functionalized face could be obtained. The latter were used for the quantification of functional groups on the surface of the Janus particles. For this, clickable fluorescent dyes were synthesized. The degree of functionality of the polymers was found to be closely mirrored in the degree of functionality of the surface. Thus, the marriage of click-chemistry to Janus particles was successful.Another complex morphology besides Janus particles are nanocapsules. Stimulus-responsive nanocapsules that show triggered release are a highly demanding and interesting system, as nanocapsules have promising applications in drug delivery and in self-healing materials. To achieve heterogeneity in the polymer shell, the stimulus-responsive block copolymer PVFc-b-PMMA was employed for the preparation of the capsules. The phase separation of the two blocks in the shell of the capsules led to a patchy morphology. These patches could then be oxidized resulting in morphology changes. In addition, swelling occurred because of the hydrophobic to hydrophilic transition of the patches induced by the oxidation. Due to the swelling, an encapsulated payload could diffuse out of the capsules, hence release was achieved.The concept of using block copolymers responsive to one stimulus for the preparation of stimulus-responsive capsules was extended to block copolymers responsive to more than one stimulus. Here, a block copolymer responsive to oxidation and a pH change as well as a block copolymer responsive to a pH change and temperature were studied in detail. The release from the nanocapsules could be regulated by tuning the different stimuli. In addition, by encapsulating stimuli-responsive payloads it was possible to selectively release a payload upon one stimulus but not upon the other one.In conclusion, the approaches taken in the course of this thesis demonstrate the broad applicability and usefulness of the SEED process to generate complex colloids. In addition, the experimental techniques established such as DC-FCCS will provide further insight into other research areas as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wir betrachten Systeme von endlich vielen Partikeln, wobei die Partikel sich unabhängig voneinander gemäß eindimensionaler Diffusionen [dX_t = b(X_t),dt + sigma(X_t),dW_t] bewegen. Die Partikel sterben mit positionsabhängigen Raten und hinterlassen eine zufällige Anzahl an Nachkommen, die sich gemäß eines Übergangskerns im Raum verteilen. Zudem immigrieren neue Partikel mit einer konstanten Rate. Ein Prozess mit diesen Eigenschaften wird Verzweigungsprozess mit Immigration genannt. Beobachten wir einen solchen Prozess zu diskreten Zeitpunkten, so ist zunächst nicht offensichtlich, welche diskret beobachteten Punkte zu welchem Pfad gehören. Daher entwickeln wir einen Algorithmus, um den zugrundeliegenden Pfad zu rekonstruieren. Mit Hilfe dieses Algorithmus konstruieren wir einen nichtparametrischen Schätzer für den quadrierten Diffusionskoeffizienten $sigma^2(cdot),$ wobei die Konstruktion im Wesentlichen auf dem Auffüllen eines klassischen Regressionsschemas beruht. Wir beweisen Konsistenz und einen zentralen Grenzwertsatz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a sporadic case of chronic progressive external ophthalmoplegia associated with ragged red fibers. The patient presented with enlarged mitochondria with deranged internal architecture and crystalline inclusions. Biochemical studies showed reduced activities of complex I, III and IV in skeletal muscle. Molecular genetic analysis of all mitochondrial tRNAs revealed a G to A transition at nt 4308; the G is a highly conserved nucleotide that participates in a GC base-pair in the T-stem of mammalian mitochondrial tRNA(Ile). The mutation was detected at a high level (approx. 50%) in muscle but not in blood. The mutation co-segregated with the phenotype, as the mutation was absent from blood and muscle in the patient's healthy mother. Functional characterization of the mutation revealed a six-fold reduced rate of tRNA(Ile) precursor 3' end maturation in vitro by tRNAse Z. Furthermore, the mutated tRNA(Ile) displays local structural differences from wild-type. These results suggest that structural perturbations reduce efficiency of tRNA(Ile) precursor 3' end processing and contribute to the molecular pathomechanism of this mutation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2-10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years), and remits by four months (human eight years), versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy) during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TM0727 gene of Thermotoga maritima is responsible for encoding what has been reported to be a modulator of DNA gyrase (pmbA). Although the function of pmbA is still unknown, it is believedto be involved in cell division, carbon storage regulation, and the synthesis of the antibiotic peptide microcin B17. It is suggested that it serves together with tldD, a known zinc dependent protease, tomodulate DNA gyrase. TM0727 is believed to be a zinc dependent protease that binds zinc in the central active site of the molecule, located between two equivalent monomeric units. However, thecrystal structure determined by Wilson et al. (2005) did not contain zinc. It therefore remains to be seen if TM0727 requires zinc for activity, or regulation, and if the protein is indeed a protease. To begin studying this protein, the gene was expressed in BL21(DE3) pLysS cells and the induction time was optimized. Using affinity and ion exchange chromatography, the protein has been successfully purified. The purification procedure can be replicated to obtain sufficient protein for characterization. Purification results show that the protein loses stability after 24 hours and remains stable under an imidazole-free lysis workup. Preliminary characterization of TM0727 has focused on understanding the protein’s structuralproperties through tryptophan fluorescence anisotropy measurements. The four tryptophan residues located within the TM0727 dimer fluoresce at different maximum wavelengths and with differentintensities upon excitation with 295nm light. These emission properties are highly sensitive to the environment (solvent, surrounding residues) of each tryptophan residue. The low number oftryptophans allows for a specific monitoring of the protein’s structure as it denatures. As more denaturant is added to the protein, its tryptophan environments have clearly altered. This is indicative of unfolding and increased solvent exposure of the protein. This unfolding has been confirmed with the addition of a fluorescent quencher. Additionally, fluorescence anisotropy measurements have been carried out on the protein to gain a preliminary understanding of the rotational dynamics of the tryptophan residues. These experiments excite the tryptophan residues within the sample using a polarized light source. Polarized emission is then detected, the degree of which depends on the rotational dynamics and local environment of the tryptophan residues. The protein was denatured and the changes in emission were recorded to detect these structural changes. Results have shown a large change in quaternary structure, consistent with a dimer to monomer transition, occurs at 1.5M Guandidine HCl. There has also been an examination of the crystal structure for the location of a potential active site. The inner cavity of the protein was inspected visually to locate a potential location for a catalytic triad, specifically the amino acids found in the active sites of serine, cyteine, and aspartateproteases. It was found that a potential aspartic protease active site may be located between the Asparate286 and Aspartate287 residues. Further investigation is warranted to test this remotepossibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several divergent cortical mechanisms generating multistability in visual perception have been suggested. Here, we investigated the neurophysiologic time pattern of multistable perceptual changes by means of a simultaneous recording with electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Volunteers responded to the subjective perception of a sudden change between stable patterns of illusionary motion (multistable transition) during a stroboscopic paradigm. We found a global deceleration of the EEG frequency prior to a transition and an occipital-accentuated acceleration after a transition, as obtained by low-resolution electromagnetic tomography analysis (LORETA) analysis. A decrease in BOLD response was found in the prefrontal cortex before, and an increase after the transitions was observed in the right anterior insula, the MT/V5 regions and the SMA. The thalamus and left superior temporal gyrus showed a pattern of decrease before and increase after transitions. No such temporal course was found in the control condition. The multimodal approach of data acquisition allows us to argue that the top-down control of illusionary visual perception depends on selective attention, and that a diminution of vigilance reduces selective attention. These are necessary conditions to allow for the occurrence of a perception discontinuity in absence of a physical change of the stimulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of Si and cooling rate are investigated for their effect on the mechanical properties and microstructure. Three alloys were chosen with varying C and Si contents and an attempt to keep the remainder of the elements present constant. Within each heat, three test blocks were poured. Two blocks had chills – one with a fluid flowing through it to cool it (active chill) and one without the fluid (passive) – and the third block did not have a chill. Cooling curves were gathered and analyzed. The mechanical properties of the castings were correlated to the microstructure, cooling rate and Si content of each block. It was found that an increase in Si content increased the yield stress, tensile strength and hardness but decreased the impact toughness, elongation and Young’s modulus. The fast cooling rates produced by the chills caused a high nodule count in the castings along with a fine ferrite grain size and a high degree of nodularity. The fine microstructures, in turn, increased the strength and ductile to brittle transition temperature (DBTT) of the castings. The fast cooling rate was not adequate to overcome the dramatic increase in DBTT that is caused by the addition of Si.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation represents experimental and numerical investigations of combustion initiation trigged by electrical-discharge-induced plasma within lean and dilute methane air mixture. This research topic is of interest due to its potential to further promote the understanding and prediction of spark ignition quality in high efficiency gasoline engines, which operate with lean and dilute fuel-air mixture. It is specified in this dissertation that the plasma to flame transition is the key process during the spark ignition event, yet it is also the most complicated and least understood procedure. Therefore the investigation is focused on the overlapped periods when plasma and flame both exists in the system. Experimental study is divided into two parts. Experiments in Part I focuses on the flame kernel resulting from the electrical discharge. A number of external factors are found to affect the growth of the flame kernel, resulting in complex correlations between discharge and flame kernel. Heat loss from the flame kernel to code ambient is found to be a dominant factor that quenches the flame kernel. Another experimental focus is on the plasma channel. Electrical discharges into gases induce intense and highly transient plasma. Detailed observation of the size and contents of the discharge-induced plasma channel is performed. Given the complex correlation and the multi-discipline physical/chemical processes involved in the plasma-flame transition, the modeling principle is taken to reproduce detailed transitions numerically with minimum analytical assumptions. Detailed measurement obtained from experimental work facilitates the more accurate description of initial reaction conditions. The novel and unique spark source considering both energy and species deposition is defined in a justified manner, which is the key feature of this Ignition by Plasma (IBP) model. The results of numerical simulation are intuitive and the potential of numerical simulation to better resolve the complex spark ignition mechanism is presented. Meanwhile, imperfections of the IBP model and numerical simulation have been specified and will address future attentions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Bone marrow contains a subset of stem cells that give rise to nonhematopoietic lineages. These nonhematopoietic stem cells appear heterogeneous and contain cells committed to mesenchymal and endothelial lineages, as well as more primitive multipotential cells resembling progenitors of germ cells and very small embryonic/epiblast-like stem cells (VSELs). Nonhematopoietic stem cells can be mobilized from the bone marrow in response to tissue injury, and cells with similar properties have been found in cord blood and normal adult organs. However, the relationship between bone marrow cells and these adult organ stem cells is still unclear. The differentiation potential of some adult stem cells is organ-restricted, but other populations appear to retain multipotential capacity. MATERIALS AND METHODS: A population of small Sca-1(+), lineage-negative (Lin(-)), CD45(-) cells resembling VSELs were isolated from neonatal mouse retina by cell sorting. Differentiation of the cells in culture was achieved by exposure to embryonic stem cell differentiation protocols. RESULTS: VSEL-like cells comprise 1.5% of the neonatal mouse retina. They remain quiescent during retinal differentiation, and thus they do not contribute to normal retinal development. However, they display eye cell differentiation potential in culture and they are also multipotential and can give rise to cells representative of all three embryonic layers. CONCLUSIONS: The neonatal retina is an abundant postnatal source of multipotential VSEL-like cells that can differentiate in culture into a variety of lineages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During school-to-work transition, adolescents develop values and prioritize what is im-portant in their life. Values are concepts or beliefs about desirable states or behaviors that guide the selection or evaluation of behavior and events, and are ordered by their relative importance (Schwartz & Bilsky, 1987). Stressing the important role of values, career re-search has intensively studied the effect of values on educational decisions and early career development (e.g. Eccles, 2005; Hirschi, 2010; Rimann, Udris, & Weiss, 2000). Few re-searchers, however, have investigated so far how values develop in the early career phase and how value trajectories are influenced by individual characteristics. Values can be oriented towards specific life domains, such as work or family. Work values include intrinsic and extrinsic aspects of work (e.g., self-development, cooperation with others, income) (George & Jones, 1997). Family values include the importance of partner-ship, the creation of an own family and having children (Mayer, Kuramschew, & Trommsdroff, 2009). Research indicates that work values change considerably during early career development (Johnson, 2001; Lindsay & Knox, 1984). Individual differences in work values and value trajectories are found e.g., in relation to gender (Duffy & Sedlacek, 2007), parental background (Loughlin & Barling, 2001), personality (Lowry et al., 2012), educa-tion (Battle, 2003), and the anticipated timing of school-to-work transition (Porfeli, 2007). In contrast to work values, research on family value trajectories is rare and knowledge about the development during the school-to-work transition and early career development is lack-ing. This paper aims at filling this research gap. Focusing on family values and intrinsic work values and we expect a) family and work val-ues to change between ages 16 and 25, and b) that initial levels of family and work values as well as value change to be predicted by gender, reading literacy, ambition, and expected du-ration of education. Method. Using data from 2620 young adults (59.5% females), who participated in the Swiss longitudinal study TREE, latent growth modeling was employed to estimate the initial level and growth rate per year for work and family values. Analyses are based on TREE-waves 1 (year 2001, first year after compulsory school) to 8 (year 2010). Variables in the models included family values and intrinsic work values, gender, reading literacy, ambition and ex-pected duration of education. Language region was included as control variable. Results. Family values did not change significantly over the first four years after leaving compulsory school (mean slope = -.03, p =.36). They increased, however, significantly five years after compulsory school (mean slope = .13, p >.001). Intercept (.23, p < .001), first slope (.02, p < .001), and second slope (.01, p < .001) showed significant variance. Initial levels were higher for men and those with higher ambitions. Increases were found to be steeper for males as well as for participants with lower educational duration expectations and reading skills. Intrinsic work values increased over the first four years (mean slope =.03, p <.05) and showed a tendency to decrease in the years five to ten (mean slope = -.01, p < .10). Intercept (.21, p < .001), first slope (.01, p < .001), and second slope (.01, p < .001) showed signifi-cant variance, meaning that there are individual differences in initial levels and growth rates. Initial levels were higher for females, and those with higher ambitions, expecting longer educational pathways, and having lower reading skills. Growth rates were lower for the first phase and steeper for the second phase for males compared to females. Discussion. In general, results showed different patterns of work and family value trajecto-ries, and different individual factors related to initial levels and development after compul-sory school. Developments seem to fit to major life and career roles: in the first years after compulsory school young adults may be engaged to become established in one's job; later on, raising a family becomes more important. That we found significant gender differences in work and family trajectories may reflect attempts to overcome traditional roles, as over-all, women increase in work values and men increase in family values, resulting in an over-all trend to converge.