884 resultados para Energy Resources


Relevância:

30.00% 30.00%

Publicador:

Resumo:

"October 19, 2005."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"October 27, 2005."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Supplement to the bibliography, Geothermal resources."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hearings held Nov. 27, 1973-Jan. 29, 1974

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Sponsored by the National Science Foundation ..."--Cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"A chapter from Energy Security: a report to the President of the United States."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rev. ed. of the Office of Environmental Assessments' Technology characterizations (1981). Includes 13 additional ECIRs (Environmental Characterization Information Reports).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Publication no. 95-120."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corn and soyabeans may not be available in many countries particularly those which do not have sufficient foreign currency or the capacity to grow them. This paper outlines strategies that may be important under these circumstances. Alternative feedstuffs and various feeding systems may be used to support poultry production. Alternative ingredients such as rice bran, pearl millet, cottonseed meal and grain legumes are discussed. Evidence is presented showing that amino acid requirements of layers and broilers may be too generous particularly in countries where climate, management and disease can impose production constraints. The ability of finishing broilers to perform well on very low-energy diets allows the inclusion of alternative feeds and by-products into formulations. Very low protein diets based on cereals and free amino acids can be used for layers without loss of performance. Self-selection of feedstuffs may be an important strategy in reducing feed costs of broilers and layers. The concept of matching production with available feed resources may compromise broiler growth and egg production, but in many countries this may be the most economical choice. Countries in the humid tropics usually have reduced poultry performance. The effects of high temperature and humidity are difficult to overcome. The vexed questions of the escalation in the price of fossil fuel and the outbreak of avian influenza, both seemingly without a solution, are clouds hanging over an otherwise buoyant industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simultaneous use of willow as a vegetation filter and an energy crop can respond both to the increasing energy demand and to the problem of the soil and water contamination. Its characteristics guarantee that the resources are used economically. As a vegetation filter, willow uptakes organic and inorganic contaminants. As a fast growing energy crop it meets the requirements of rural areas without the exploitation of existing forestry. The aim of the research was to gather knowledge on the thermal behaviour of willow, uptaking contaminants and then used as an energy crop. For this reason pyrolysis experiments were performed in two different scales. In analytical scale metal-contaminated wood was investigated and bench scale pyrolysis experiments were performed with nitrogen-enriched willow, originated from a wastewater treatment plant. Results of the pyrolysis showed that 51-81 % of the wastewater derived nitrogen of willow was captured in the char product. Char had low surface area (1.4 to 5.4 m2/g), low bulk density (0.15–0.18 g/cm3), high pH values (7.8–9.4) and high water-holding capacity (1.8 to 4.3 cm3/g) while the bioavailability of char nutrients was low. Links were also established between the pyrolysis temperature and the product properties for maximising the biochar provided benefits for soil applications. Results also showed that the metal binding capacity of wood varied from one metal ion to another, char yield increased and levoglucosan yield decreased in their presence. While char yield was mainly affected by the concentration of the metal ions, levoglucosan yield was more dependent on the type of the ionic species. Combustion experiments were also carried out with metal-enriched char. The burnout temperatures, estimated ignition indices and the conversion indicate that the metal ions type and not the amount were the determining factors during the combustion. Results presented in the Thesis provide better understanding on the thermal behaviour of nitrogen-enriched and metal contaminated biomass which is crucial to design effective pyrolysis units and combustors. These findings are relevant for pyrolysis experiments, where the goal is to yield char for energetic or soil applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The paper aims to design and prove the concept of micro-industry using trigeneration fuelled by biomass, for sustainable development in rural NW India. Design/methodology/approach: This is being tested at village Malunga, near Jodhpur in Rajasthan. The system components comprise burning of waste biomass for steam generation and its use for power generation, cooling system for fruit ripening and the use of steam for producing distilled water. Site was selected taking into account the local economic and social needs, biomass resources available from agricultural activities, and the presence of a NGO which is competent to facilitate running of the enterprise. The trigeneration system was designed to integrate off-the-shelf equipment for power generation using boilers of approximate total capacity 1 tonne of fuel per hour, and a back-pressure steam turbo-generator (200 kW). Cooling is provided by a vapour absorption machine (VAM). Findings: The financial analysis indicates a payback time of less than two years. Nevertheless, this is sensitive to market fluctuations and availabilities of raw materials. Originality/value: Although comparable trigeneration systems already exist in large food processing industries and in space heating and cooling applications, they have not previously been used for rural micro-industry. The small-scale (1-2 m3/h output) multiple effect distillation (3 effect plus condenser) unit has not previously been deployed at field level. © Emerald Group Publishing Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in renewable energy generators introduced into the electricity grid is putting pressure on its stability and management as predictions of renewable energy sources cannot be accurate or fully controlled. This, with the additional pressure of fluctuations in demand, presents a problem more complex than the current methods of controlling electricity distribution were designed for. A global approximate and distributed optimisation method for power allocation that accommodates uncertainties and volatility is suggested and analysed. It is based on a probabilistic method known as message passing [1], which has deep links to statistical physics methodology. This principled method of optimisation is based on local calculations and inherently accommodates uncertainties; it is of modest computational complexity and provides good approximate solutions.We consider uncertainty and fluctuations drawn from a Gaussian distribution and incorporate them into the message-passing algorithm. We see the effect that increasing uncertainty has on the transmission cost and how the placement of volatile nodes within a grid, such as renewable generators or consumers, effects it.