848 resultados para Energia solar térmica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When people drink water having a fluoride (F-) concentration >1-1.5 mg/L for a long period of time, various ailments that are collectively referred to as fluorosis occur. Based on the design of Thomas (http://www.planetkerala.org), an inclined basin-type solar still containing sand and water has been used at Bangalore for defluoridation. For water samples having a fluoride concentration in the range 5-20 mg/L, the fluoride concentration in the distillate was usually <1.5 mg/L. During the periods October 2006 May 2007 and October 2007 May 2008, the volume of distillate showed a significant diurnal variation, ranging from 0.3 to 4.0 L/m(2).day. Based on the figures for 2006, the cost of the still was about Rs. 850 (US$16) for collector areas in the range 0.50-0.57 m(2). The occurrence of F- in the distillate merits further investigation. Overall, the still effectively removes F-, but a large area of the collector, in the range 2.5-25 m(2), is needed to produce about 10 L of distilled water for cooking and drinking. Rainwater falling on the upper surface of the still was collected, and its fluoride concentration was found to be below the desirable limit of 1 mg/L. Hence it can also be used for cooking and drinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile method of solution combustion was used to synthesize a new solid solution Bi2Ce2O7. The structure was determined from powder X-ray diffraction (PXRD) and found to crystallize in the space group Fm (3) over barm with cell parameter a = 5.46936(9) angstrom. The particle sizes varied from 5 to 6 nm. The degradation of cationic dye malachite green (MG) was investigated under solar radiation as the band gap of the material is 2.34 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article compares the land use in solar energy technologies with conventional energy sources. This has been done by introducing two parameters called land transformation and land occupation. It has been shown that the land area transformed by solar energy power generation is small compared to hydroelectric power generation, and is comparable with coal and nuclear energy power generation when life-cycle transformations are considered. We estimate that 0.97% of total land area or 3.1% of the total uncultivable land area of India would be required to generate 3400 TWh/yr from solar energy power systems in conjunction with other renewable energy sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel random copolymers containing dithienylcyclopentadienone, thiophene and benzothiadiazole were synthesized and photovoltaic properties of these materials were evaluated. Thermal, structural, optical and electrochemical characterization of the synthesized copolymers was carried out. These thermally stable copolymers are solution processable unlike the homopolymer. The absorption spectra indicated that with the incorporation of alkyl chains in the thiophene moiety, the onset of absorption increases and hence band gap decreases (1.47 eV to 1.41 eV). Bulk heterojunction solar cells were fabricated with the blend of copolymer and phenyl-C61-butyric acid methyl ester (PCBM) as the active material and device parameters were extracted. The copolymer consists of alkyl thiophene exhibit higher open circuit voltage than the copolymer consisting of thiophene moiety. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies show that fast climate response on time scales of less than a month can have important implications for long-term climate change. In this study, we investigate climate response on the time scale of days to weeks to a step-function quadrupling of atmospheric CO2 and contrast this with the response to a 4% increase in solar irradiance. Our simulations show that significant climate effects occur within days of a stepwise increase in both atmospheric CO2 content and solar irradiance. Over ocean, increased atmospheric CO2 warms the lower troposphere more than the surface, increasing atmospheric stability, moistening the boundary layer, and suppressing evaporation and precipitation. In contrast, over ocean, increased solar irradiance warms the lower troposphere to a much lesser extent, causing a much smaller change in evaporation and precipitation. Over land, both increased CO2 and increased solar irradiance cause rapid surface warming that tends to increase both evaporation and precipitation. However, the physiological effect of increased atmospheric CO2 on plant stomata reduces plant transpiration, drying the boundary layer and decreasing precipitation. This effect does not occur with increased solar irradiance. Therefore, differences in climatic effects from CO2 versus solar forcing are manifested within days after the forcing is imposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the importance of meridional circulation variations in modelling the irregularities of the solar cycle by using the flux transport dynamo model. We show that a fluctuating meridional circulation can reproduce some features of the solar cycle like the Waldmeier effect and the grand minimum. However, we get all these results only if the value of the turbulent diffusivity in the convection zone is reasonably high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new thieno3,2-b]thiophenediketopyrrolopyrrole-benzo1,2-b:4,5-b']dithio phene based narrow optical gap co-polymer (PTTDPP-BDT) has been synthesized and characterized for field-effect transistors and solar cells. In field-effect transistors the polymer exhibited ambipolar charge transport behaviour with maximum hole and electron mobilities of 10(-3) cm(2) V-1 s(-1) and 10(-5) cm(2)V(-1) s(-1), respectively. The respectable charge transporting properties of the polymer were consistent with X-ray diffraction measurements that showed close molecular packing in the solid state. The difference in hole and electron mobilities was explained by density functional theory calculations, which showed that the highest occupied molecular orbital was delocalized along the polymer backbone with the lowest unoccupied molecular orbital localized on the bis(thieno3,2-b]thiophene)diketopyrrolopyrrole units. Bulk heterojunction photovoltaic devices with the fullerene acceptor PC70BM were fabricated and delivered a maximum conversion efficiency of 3.3% under AM1.5G illumination. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of the Sun's magnetic activity is important because of its effect on space environment and climate. However, recent efforts to predict the amplitude of the solar cycle have resulted in diverging forecasts with no consensus. Yeates et al. have shown that the dynamical memory of the solar dynamo mechanism governs predictability, and this memory is different for advection- and diffusion-dominated solar convection zones. By utilizing stochastically forced, kinematic dynamo simulations, we demonstrate that the inclusion of downward turbulent pumping of magnetic flux reduces the memory of both advection- and diffusion-dominated solar dynamos to only one cycle; stronger pumping degrades this memory further. Thus, our results reconcile the diverging dynamo-model-based forecasts for the amplitude of solar cycle 24. We conclude that reliable predictions for the maximum of solar activity can be made only at the preceding minimum-allowing about five years of advance planning for space weather. For more accurate predictions, sequential data assimilation would be necessary in forecasting models to account for the Sun's short memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The short-lived radionuclide Ca-41 plays an important role in constraining the immediate astrophysical environment and the formation timescale of the nascent solar system due to its extremely short half-life (0.1 Myr). Nearly 20 years ago, the initial ratio of Ca-41/Ca-40 in the solar system was determined to be (1.41 +/- 0.14) x 10(-8), primarily based on two Ca-Al-rich Inclusions (CAIs) from the CV chondrite Efremovka. With an advanced analytical technique for isotopic measurements, we reanalyzed the potassium isotopic compositions of the two Efremovka CAIs and inferred the initial ratios of Ca-41/Ca-40 to be (2.6 +/- 0.9) x 10(-9) and (1.4 +/- 0.6) x 10(-9) (2 sigma), a factor of 7-10 lower than the previously inferred value. Considering possible thermal processing that led to lower Al-26/Al-27 ratios in the two CAIs, we propose that the true solar system initial value of Ca-41/Ca-40 should have been similar to 4.2 x 10(-9). Synchronicity could have existed between Al-26 and Ca-41, indicating a uniform distribution of the two radionuclides at the time of CAI formation. The new initial Ca-41 abundance is 4-16 times lower than the calculated value for steady-state galactic nucleosynthesis. Therefore, Ca-41 could have originated as part of molecular cloud materials with a free decay time of 0.2-0.4 Myr. Alternative possibilities, such as a last-minute input from a stellar source and early solar system irradiation, could not be definitively ruled out. This underscores the need for more data from diverse CAIs to determine the true astrophysical origin of Ca-41.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells (DSSC) based on TiO2 nanoparticles for three different ratios of lithium iodide (LiI) and iodine (I-2) has been investigated. The electron transport properties and interfacial recombination kinetics have been evaluated by electrochemical impedance spectroscopy (EIS). It is found that increasing the concentration of lithium iodide for all ratios of iodine and lithium iodide decreases the open-circuit voltage (V-oc) whereas short circuit current density (J(sc)) and fill factor (FF) shows improvement. The reduction in V-oc and increment in J(sc) is ascribed to the higher concentration of absorptive Li+ cations which shifts the conduction band edge of TiO2 positively. The increase in FF is due to the reduction in electron transport resistance (R-omega) of the cell. In addition for all the ratios of LiI/I-2 increasing the concentration of I-2 decreases the V-oc which is attributed to the increased recombination with tri-iodide ions (I-3(-)) as verified from the low recombination resistance (R-k) and electron lifetime (tau) values obtained by EIS analysis. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercritical carbon dioxide based Brayton cycle for possible concentrated solar power applications is investigated and compared with trans- and sub-critical operations of the same fluid. Thermal efficiency, specific work output and magnitude of irreversibility generation are used as some of the performance indicators. While the thermal efficiency increases almost linearly with low side pressure in the sub- and trans-critical cycles, it attains a maximum in the supercritical regime at 85 bar after which there are diminishing returns on increasing the low side pressure. It is also found that supercritical cycle is capable of producing power with a thermal efficiency of >30% even at a lower source temperature (820K) and accounting for foreseeable non-idealities albeit with a higher turbine inlet pressure (similar to 300 bar) which is not matched by a conventional sub-critical cycle even with a high source temperature of 978K. The reasons for lower efficiency than in an ideal cycle are extracted from an irreversibility analysis of components, namely, compressor, regenerator, turbine and gas cooler. Low sensitivity to the source temperature and extremely small volumetric flow rates in the supercritical cycle could offset the drawback of high pressures through a compact system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoassisted electrolysis of water is considered as an effective way of storing solar energy in the form of hydrogen fuel. This overall reaction involves the oxidation of water to oxygen at the anode and the reduction of protons to hydrogen at the cathode. Cobalt-phosphate-based catalyst (Co-Pi) is a potentially useful material for oxygen evolution reaction. In the present study, electrochemical deposition of Co-Pi catalyst is carried out on Au-coated quartz crystal from 0.1 M phosphate buffer (pH 7) containing 0.5 mM Co2+ ion, along with the simultaneous measurement of mass changes at the electrode surface. Cyclic voltammograms and mass variations are recorded during the course of deposition. A current peak is observed at 0.92 V vs Ag/AgCl, 3 M KCl corresponding to oxidation of Co2+ ion. The mass of the electrode starts increasing at this potential, suggesting the deposition of a Co(III)-based insoluble product on the electrode surface. The stability of the catalyst is also studied at several potentials in both buffered and nonbuffered electrolyte by monitoring the real-time mass variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have prepared two donor-acceptor-donor (D-A-D) pi-conjugated oligomers to investigate the effect of phase separation on the performance of bulk heterojunction (BHJ) solar cells. These charge transfer low band gap pi-conjugated oligomers (TTB and NMeTTB) were synthesized by Knoevenagel condensation of terthiophenecarbaldehyde and barbiturate appended pyran derivative. The thin film morphology of both the oligomers and along with electron acceptor 6,6]-phenyl-C60-butyric acid methyl ester (PC61BM) was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The blend of NMeTTB and PC61BM thin film yield highly ordered thin film, whereas there was clear phase separation between TTB and PC61BM in thin film. The BHJ solar cell was fabricated using a blend of NMeTTB and TTB with PC61BM acceptor in 1:1 ratio as active layer, and a power conversion efficiency of 1.8% was obtained. This device characteristic was compared with device having TTB:PC61BM as active layer, and large difference is observed in photocurrents. This poor performance of TTB in BHJ devices was attributed to the difference in the nanoscale morphology of the corresponding derivatives. We rationalize our findings based on the low charge carrier mobility in organic field-effect transistors and miscibility/phase separation parameter of binary components (oligomers and PC61BM) in the active layer of bulk heterojunction solar cells.