992 resultados para Electric motor industry
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
The proper disposal of the several types of wastes produced in industrial activities increases production costs. As a consequence, it is common to develop strategies to reuse these wastes in the same process and in different processes or to transform them for use in other processes. This work combines the needs for new synthesis methods of nanomaterials and the reduction of production cost using wastes from citrine juice (orange, lime, lemon and mandarin) to produce a new added value product, green zero-valent iron nanoparticles that can be used in several applications, including environmental remediation. The results indicate that extracts of the tested fruit wastes (peel, albedo and pulp fractions) can be used to produce zero-valent iron nanoparticles (nZVIs). This shows that these wastes can be an added value product. The resulting nZVIs had sizes ranging from 3 up to 300 nm and distinct reactivities (pulp > peel > albedo extracts). All the studied nanoparticles did not present a significant agglomeration/settling tendency when compared to similar nanoparticles, which indicates that they remain in suspension and retain their reactivity.
Resumo:
The preliminary results from a bipolar industrial solidstate based Marx generator, developed for the food industry, capable of delivering 25 kV/250 A positive and negative pulses with 12 kW average power, are presented and discussed. This modular topology uses only four controlled switches per cell, 27 cells in total that can be charged up to 1000V each, the two extra cells are used for droop compensation. The triggering signals for all the switches are generated by a FPGA. Considering that biomaterials are similar to resistive type loads, experimental results from this new bipolar 25 kV modulator into resistive loads are presented and discussed.
Resumo:
This work describes the utilization of Pulsed Electric Fields to control the protozoan contamination of a microalgae culture, in an industrial 2.7m3 microalgae photobioreactor. The contaminated culture was treated with Pulsed Electric Fields, PEF, for 6h with an average of 900V/cm, 65μs pulses of 50Hz. Working with recirculation, all the culture was uniformly exposed to the PEF throughout the assay. The development of the microalgae and protozoan populations was followed and the results showed that PEF is effective on the selective elimination of protozoa from microalgae cultures, inflicting on the protozoa growth halt, death or cell rupture, without affecting microalgae productivity. Specifically, the results show a reduction of the active protozoan population of 87% after 6h treatment and 100% after few days of normal cultivation regime. At the same time, microalgae growth rate remained unaffected. © 2014 Elsevier B.V.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: crosslinked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.
Resumo:
This paper proposes an implementation, based on a multi-agent system, of a management system for automated negotiation of electricity allocation for charging electric vehicles (EVs) and simulates its performance. The widespread existence of charging infrastructures capable of autonomous operation is recognised as a major driver towards the mass adoption of EVs by mobility consumers. Eventually, conflicting requirements from both power grid and EV owners require automated middleman aggregator agents to intermediate all operations, for example, bidding and negotiation, between these parts. Multi-agent systems are designed to provide distributed, modular, coordinated and collaborative management systems; therefore, they seem suitable to address the management of such complex charging infrastructures. Our solution consists in the implementation of virtual agents to be integrated into the management software of a charging infrastructure. We start by modelling the multi-agent architecture using a federated, hierarchical layers setup and as well as the agents' behaviours and interactions. Each of these layers comprises several components, for example, data bases, decision-making and auction mechanisms. The implementation of multi-agent platform and auctions rules, and of models for battery dynamics, is also addressed. Four scenarios were predefined to assess the management system performance under real usage conditions, considering different types of profiles for EVs owners', different infrastructure configurations and usage and different loads on the utility grid (where real data from the concession holder of the Portuguese electricity transmission grid is used). Simulations carried with the four scenarios validate the performance of the modelled system while complying with all the requirements. Although all of these have been performed for one charging station alone, a multi-agent design may in the future be used for the higher level problem of distributing energy among charging stations. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
Anchored on a systemic perspective of innovation and particularly on the triple helix model, which highlights the state, university and companies as central players, this paper aims to discuss the factors that enable or constrain the processes of innovation, using the system thinking approach to understand the academia-industry symbiosis. The paper's empirical section is based on a case study on Portugal's major highway management concessionaire. In order to ensure a "healthy" co-innovation environment, the archetype studied emphasizes the need to implement coordination mechanisms such as communication routines and metrics to monitor collaborative behavior in addition to the need to develop global goals that align the efforts of the partners.
Resumo:
Multi-criteria decision analysis(MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização em Automação e Sistemas
Resumo:
Multi-criteria decision analysis (MCDA) has been one of the fastest-growing areas of operations research during the last decades. The academic attention devoted to MCDA motivated the development of a great variety of approaches and methods within the field. These methods distinguish themselves in terms of procedures, theoretical assumptions and type of decision addressed. This diversity poses challenges to the process of selecting the most suited method for a specific real-world decision problem. In this paper we present a case study in a real-world decision problem arising in the painting sector of an automobile plant. We tackle the problem by resorting to the well-known AHP method and to the MCDA method proposed by Pereira and Fontes (2012) (MMASSI). By relying on two, rather than one, MCDA methods we expect to improve the confidence and robustness of the obtained results. The contributions of this paper are twofold: first, we intend to investigate the contrasts and similarities of the results obtained by distinct MCDA approaches (AHP and MMASSI); secondly, we expect to enrich the literature of the field with a real-world MCDA case study on a complex decision making problem since there is a paucity of applied research work addressing real decision problems faced by organizations.
Resumo:
Comunicação apresentada no 3º Encontro Conhecimento e Cooperação, INA, Lisboa, 17 de setembro de 2015
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
With the introduction of the electrics cars into the market new technologies regarding the battery are being developed and new problems to be solved, one of them the battery management system because each type of cell requires a specific way of handling. This research is done using the active research method to find out the actual problem on this subject and features a BMS should have, understand how they work and how to develop them applied to the purpose on this work. Once the features the BMS should have are clarified, it’s possible to develop a BMS for an electric racing car. The decisions are made taking into consideration the nature of the vehicle being developed. After the project done it’s clear to see that what was developed was not only the BMS itself but all the other factors around it, such as CAN communication, safety control, diagnostics and so on.
Resumo:
Sustainable Construction, Materials and Practice, p. 426-432
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.