769 resultados para Ectopic osteogenesis
Resumo:
The molecular mechanisms that regulate the transcription of key developmental genes involved in shoot organogenesis have yet to be fully elucidated. However, it is clear that plant growth regulators, such as cytokinin, play a critical role in the differentiation of adventitious shoots. In Nicotiana tabacum zz100 leaf discs, high frequency shoot formation could be induced with 5 muM of the cytokinin N-6-benzyladenine (BA). Increasing the exogenous BA concentration to greater than 20 muM resulted in stunted explants with abnormal shoot morphology and altered mineral composition. Explants with abnormal shoots did not appear to be hyperhydric. Abnormalities were, however, associated with an increase in the expression of a knotted1-type homeobox gene (TobH1) isolated from normal shoot-forming cultures. The results suggest that the development of cytokinin-induced abnormal shoot morphology possibly involves changes in TobH1 gene expression.
Resumo:
N4WBP5A (Ndfip2) belongs to an evolutionarily conserved group of Nedd4-interacting proteins with two homologues in mammalian species. We have previously shown that N4WBP5A expression in Xenopus oocytes results in increased cell-surface expression of the epithelial sodium channel. N4WBPs are characterized by one or two amino terminal PPxY motifs and three transmembrane domains. Here we show that both PPxY motifs of N4WBP5A mediate interaction with WW domains of Nedd4 and that N4WBP5A can physically interact with the WW domains of several Nedd4-family proteins. N4WBP5A is ubiquitinated and ubiquitination does not significantly affect the turnover of N4WBP5A protein. Ubiquitination of N4WBP5A is enhanced by Nedd4 and Nedd4-2 expression. N4WBP5A localizes to the Golgi, vesicles associated with the Golgi complex and to multivesicular bodies. We show that the ectopic expression of N4WBP5A inhibits receptor-mediated endocytosis of labelled epidermal growth factor. N4WBP5A overexpression inhibits accumulation of EGF in large endocytic/lysosomal vesicles suggestive of a role for N4WBP5A in protein trafficking. We propose that N4WBP5A acts as an adaptor to recruit Nedd4 family ubiquitin-protein ligases to the protein trafficking machinery.
Resumo:
The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.
Resumo:
Purpose: From the experience of a large combined series of transperitoneal. (TP) and retroperitoneal (RP) endoscopic complete and partial nephroureterectornies in children, we present a logical selective endoscopic approach to benign renal pathology. Materials and Methods: During a 5-year period 122 complete nephrectomies and nephroureterectomies (bilateral 2, invisible ectopic 8) and 63 partial nephroureterectomies for duplex (52 upper, 8 lower) or singleton polar disease (xanthogranulomatous pyelonephritis 1, cyst 2) were performed. Of the partial nephrectomies, ureterectomy, bladder repair and lower moiety reimplantation were performed in 8. Patient age ranged from 2.7 months to 14 years (mean 2.9 years). Preoperative weight ranged from 2.7 to 98 kg (mean 12.3). The position of the renal remnant, the presence or absence of a refluxing ureter and the need for ureterectomy were the major determining factors affecting choice of endoscopic approach. Results: A total of 179 (96.7%) procedures were successfully completed endoscopically. The 6 open conversions (3.2%) occurred early in our experience. The operating time reflected the complexity of the excision and lower urinary reconstruction (lateral and posterior RP 25 to 145 minutes [mean 921) TP with ureterocelectomy and bladder neck repair 105 to 355 minutes [mean 153]. Hospital stay for RP and simple TP was 1.5 days (mean 1 to 4) and for complicated TP 2 to 8 days (mean 3.5). Conclusions: We suggest a posterior retroperitoneal approach with isolated renal excision without extended ureterectomy. The lateral retroperitoneal approach allows complete ureterectomy as well as better exposure to horseshoe and pelvic kidneys and, therefore, avoids exposure to intraperitoneal. structures. Finally, the transperitoneal approach is recommended when complete moiety excision with lower urinary reconstruction is anticipated.
Resumo:
Primary olfactory neurons situated in the nasal septum project axons within fascicles along a highly stereotypical trajectory en route to the olfactory bulb. The ventral fascicles make a distinct dorsovental turn at the rear of the septum so as to reach the olfactory bulb. In the present study we have used a brain and nasal septum coculture system to examine the role of target tissue on the peripheral trajectory of olfactory sensory axons. In cultures of isolated embryonic nasal septa, olfactory axons form numerous parallel fascicles that project caudally in the submucosa, as they do in vivo. The ventral axon fascicles in the septum, however, often fail to turn, and do not project dorsally towards the roof of the nasal cavity. The presence of olfactory bulb, cortical, or tectal tissue apposed to the caudal end of the septum rescued this phenotype, causing the ventral fascicles to follow a normal in vivo-like trajectory. Ectopic placements of the explants revealed that brain tissue is not tropic for olfactory axons but appears to maintain the peripheral trajectory of growing axons in the nasal septum. Although primary olfactory axons are able to penetrate into olfactory bulb in vitro, they only superficially enter cortical tissue, whereas they do not grow into tectal explants. The ability of axons to differentially grow into different brain regions was shown to be unrelated to the migratory behavior of olfactory ensheathing cells, indicating that olfactory axons are directly responsive to guidance cues in the brain. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The role of the eukaryotic release factor 1 (eRF1) in translation termination has previously been established in yeast; however, only limited characterization has been performed on any plant homologs. Here, we demonstrate that cosuppression of eRF1-1 in Arabidopsis (Arabidopsis thaliana) has a profound effect on plant morphology, resulting in what we term the broomhead phenotype. These plants primarily exhibit a reduction in internode elongation causing the formation of a broomhead-like cluster of malformed siliques at the top of the inflorescence stem. Histological analysis of broomhead stems revealed that cells are reduced in height and display ectopic lignification of the phloem cap cells, some phloem sieve cells, and regions of the fascicular cambium, as well as enhanced lignification of the interfascicular fibers. We also show that cell division in the fascicular cambial regions is altered, with the majority of vascular bundles containing cambial cells that are disorganized and possess enlarged nuclei. This is the first attempt at functional characterization of a release factor in vivo in plants and demonstrates the importance of eRF1-1 function in Arabidopsis.
Resumo:
The Suppressor of UnderReplication (SuUR) gene controls the DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster salivary gland polytene chromosomes. In the present work, we investigate the functional importance of different regions of the SUUR protein by expressing truncations of the protein in an UAS-GAL4 system. We find that SUUR has at least two separate chromosome-binding regions that are able to recognize intercalary and pericentric heterochromatin specifically. The C-terminal part controls DNA underreplication in intercalary heterochromatin and partially in pericentric heterochromatin regions. The C-terminal half of SUUR suppresses endoreplication when ectopically expressed in the salivary gland. Ectopic expression of the N-terminal fragments of SUUR depletes endogenous SUUR from polytene chromosomes, causes the SuUR(-) stopphenotype and induces specific swellings in heterochromatin.
Resumo:
Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.
Resumo:
Purpose: Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. Experimental Design: RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. Results: We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARa, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and Pan IN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early Pan IN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. Conclusions: We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.
Resumo:
Gene translocations that repress the function of the Runx1 transcription factor play a critical role in the development of myeloid leukemia. In this report, we demonstrate that Runx1 precisely regulates c-fms (CSF-1 receptor) gene expression. Runx1 controlled expression by binding to multiple sites within the mouse c-fms gene, allowing interaction between promoter and downstream enhancer elements. The runx1 and c-fms genes showed an identical pattern of expression in mature macrophages. Runx1 expression was repressed in CSF-1 stimulated, proliferating bone marrow-derived macrophages (BMM) and significantly increased in quiescent, CSF-1 starved cells. The RAW264.7 and Mono-Mac-6, macrophage-like cell lines expressed low levels of Runx1 and both showed growth arrest and cell death with ectopic expression of Runx1. The EM-3 cell line, which represents an early myeloid progenitor cell line, showed growth arrest with Runx1 expression in the absence of any detectable changes in cell differentiation. These findings suggest that Runx1 regulates growth and survival of myeloid cells and provide a novel insight into the role of Runx family gene translocations in leukemogenesis.
Resumo:
Mutations in the Hedgehog receptor, Patched 1 (Ptch1), have been linked to both familial and sporadic forms of basal cell carcinoma (BCC), leading to the hypothesis that loss of Ptch1 function is sufficient for tumor progression. By combining conditional knockout technology with the inducible activity of the Keratin6 promoter, we provide in vivo evidence that loss of Ptch1 function from the basal cell population of mouse skin is sufficient to induce rapid skin tumor formation, reminiscent of human BCC. Elimination of Ptch1 does not promote the nuclear translocation of beta-catenin and does not induce ectopic activation or expression of Notch pathway constituents. In the absence of Ptch1, however, a large proportion of basal cells exhibit nuclear accumulation of the cell cycle regulators cyclin D1 and B1. Collectively, our data suggest that Ptch1 likely functions as a tumor suppressor by inhibiting G(1)-S phase and G(2)-M phase cell cycle progression, and the rapid onset of tumor progression clearly indicates Ptch1 functions as a gatekeeper. In addition, we note the high frequency and rapid onset of tumors in this mouse model makes it an ideal system for testing therapeutic strategies, such as Patched pathway inhibitors.
Resumo:
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
O objetivo deste estudo retrospectivo foi avaliar a prevalência de anomalias de posição (irrupção ectópica de canino superior para palatino, transposição dental, distoangulação de segundos pré-molares inferiores, mesioangulação de segundo molar inferior permanente e infraoclusão de molares decíduos), de número (supranumerários) e de tamanho (microdontias) em pacientes com agenesias de dentes permanentes, comparando-as com as prevalências esperadas para a população em geral, além de testar a hipótese de que pacientes com agenesia de dentes permanentes apresentem uma prevalência aumentada de hipoplasia de esmalte. Para tanto, a amostra deste estudo foi composta por 351 pacientes, com a presença de agenesia de no mínimo um dente permanente, na faixa etária entre 8 e 30 anos e com prontuários clínicos preenchidos. A amostra foi coletada a partir do exame das documentações ortodônticas pertencentes aos arquivos de uma escola de aperfeiçoamento profissional em Ortodontia, de uma clínica radiológica odontológica e de consultórios particulares de ortodontistas. O material de estudo englobou radiografias panorâmicas e periapicais, modelos de gesso, fotografias intra e extraorais e prontuários clínicos devidamente preenchidos. Inicialmente foi analisada a reprodutibilidade das avaliações pela porcentagem de concordância utilizando Kappa, com intervalo de confiança de 95%. O teste de qui-quadrado foi utilizado para comparar as prevalências de agenesias e anomalias na amostra com as prevalências esperadas segundo a literatura científica, considerando o nível de significância de 5%. Analisou-se, ainda, o grau das associações pela razão de chances ( odds ratio ) e o respectivo intervalo de confiança de 95%. A prevalência de agenesias dentais na amostra, excluindo os terceiros molares, foi de 88,6%. Dos 351 pacientes, 128 (36,4%) apresentavam agenesia no arco maxilar, 108 (30,8%) no mandibular e 115 (32,8%) nos dois arcos. Em relação ao hemiarco maxilar esquerdo, 52,4% apresentavam agenesia, no direito 55,0%, no mandibular esquerdo 48,7% e no direito 47,3%. Das anomalias associadas avaliadas, 28,5% microdontia, 28,2% hipoplasia de esmalte, 7,4% apresentavam irrupção ectópica de canino superior por palatino, 6,6% distoangulação, 3,9% transposição de canino/pré-molar superior, 4,3% infraoclusão, 3,7 supranumerário, 3,7% mesioangulação, 0,6% transposição de incisivo/canino inferior, e, quando comparadas com a população em geral, observou que 96,1 vezes mais chance de apresentar mesioangulação do segundo molar inferior; 34,6 vezes mais chance de apresentar distoangulação; 15,9 vezes mais chance de apresentar transposição canino/pré-molar superior; 14,3 vezes mais chance de apresentar transposição de incisivo/canino inferior; 9 vezes mais chance de hipoplasia; a microdontia do incisivo lateral apresentou 8,1 vezes mais chance; 5,2 vezes mais chance de apresentar irrupção ectópica do canino superior por palatino, e, em relação à infraoclusão, apresentando uma menor chance do que a população geral. A partir dos resultados obtidos, verificou-se uma forte associação entre a agenesia de dentes permanentes, correlacionando com outras anomalias dentais importantes. Foi constatado de que pacientes com agenesia de dentes permanentes apresentam uma prevalência aumentada de hipoplasia de esmalte e de que agenesias e outras anomalias associadas apresentam-se interligadas geneticamente entre si.
Resumo:
Leukemia inhibitory factor (LIF) and its receptor (LIFR) are "twins" of Oncostatin M (OSM) and OSMR, respectively, likely having arisen through gene duplications. We compared their effects in a bone nodule-forming model of in vitro osteogenesis, rat calvaria (RC) cell cultures. Using a dominant-negative LIF mutant (hLIF-05), we showed that in RC cell cultures mouse OSM (mOSM) activates exclusively glycoprotein 130 (gp130)/OSMR. In treatments starting at early nodule formation stage, LIF, mOSM, IL-11, and IL-6 + sIL-6R inhibit bone nodule formation, that is, osteoprogenitor differentiation. Treatment with mOSM, and no other cytokine of the family, in early cultures (day 1-3 or 1-4) increases bone colony numbers. hLIF-05 also dose dependently stimulates bone nodule formation, confirming the inhibitory action of gp130/LIFR on osteogenesis. In pulse treatments at successive stages of bone nodule formation and maturation, LIF blocks osteocalcin (OCN) expression by differentiated osteoblasts, but has no effect on bonesialoprotein (BSP) expression. Mouse OSM inhibits OCN and BSP expression in preconfluent cultures with no or progressively reduced effects at later stages, reflecting the disruption of early nodules, possibly due to the strong apoptotic action of mOSM in RC cell cultures. In summary, LIFR and OSMR display differential effects on differentiation and phenotypic expression of osteogenic cells, most likely through different signal transduction pathways. In particular, gp130/OSMR is the only receptor complex of the family to stimulate osteoprogenitor differentiation in the RC cell culture model. © 2005 Wiley-Liss, Inc.
Resumo:
Endothelial tip cells guide angiogenic sprouts by exploring the local environment for guidance cues such as vascular endothelial growth factor (VegfA). Here we present Flt1 (Vegf receptor 1) loss- and gain-of-function data in zebrafish showing that Flt1 regulates tip cell formation and arterial branching morphogenesis. Zebrafish embryos expressed soluble Flt1 (sFlt1) and membrane-bound Flt1 (mFlt1). In Tg(flt1(BAC):yfp) × Tg(kdrl:ras-cherry)(s916) embryos, flt1:yfp was expressed in tip, stalk and base cells of segmental artery sprouts and overlapped with kdrl:cherry expression in these domains. flt1 morphants showed increased tip cell numbers, enhanced angiogenic behavior and hyperbranching of segmental artery sprouts. The additional arterial branches developed into functional vessels carrying blood flow. In support of a functional role for the extracellular VEGF-binding domain of Flt1, overexpression of sflt1 or mflt1 rescued aberrant branching in flt1 morphants, and overexpression of sflt1 or mflt1 in controls resulted in short arterial sprouts with reduced numbers of filopodia. flt1 morphants showed reduced expression of Notch receptors and of the Notch downstream target efnb2a, and ectopic expression of flt4 in arteries, consistent with loss of Notch signaling. Conditional overexpression of the notch1a intracellular cleaved domain in flt1 morphants restored segmental artery patterning. The developing nervous system of the trunk contributed to the distribution of Flt1, and the loss of flt1 affected neurons. Thus, Flt1 acts in a Notch-dependent manner as a negative regulator of tip cell differentiation and branching. Flt1 distribution may be fine-tuned, involving interactions with the developing nervous system.