968 resultados para Ecological Resources
Strategic partnership of stakeholders: a veritable tool for sustainable fishery resources in Nigeria
Resumo:
Fishery resources are very important resource from the aquatic environment to the Nigerian economy. Stakeholders involvement in its management is highly important therefore, this paper proposes two frameworks against which sustainable fishery should be based, vis-a-vis stakeholders participation. The paper showed that decision-making involving stakeholders would enhance the goals of sustainable fishery development and create unity of purpose among various stakeholders
Resumo:
Field survey was conducted to evaluate the role of fishermen cooperative in the development of fisheries resources in Kainji Lake. The study was conducted with aid of questionnaires administered in five fishing villages namely Monnai, Yuna, Kaya, Malale and Tunga Danbaba. Ten questionnaires were administered in each fishing village majority of the fishermen interviewed are between the ages of 20-40 years. The results of the educational background revealed that 60% of the respondents were knowledgeable only on Quranic education. Majority of the respondents (86%) was members of fishermen cooperative societies. Only 32% of the respondents indicated to have benefited for loan and credit facilities. Sixty-nine (69) percent of fishermen realized income of between N1, 000-N2, and 000 daily. The major problem facing fishermen cooperative includes lack of capital, lack of access to loan and credit facilities, shortage of adequately trained and well-motivated fisheries extension workers, inadequate fishing inputs and high charge of fishing license fees by Kainji Lake fisheries Management and Conservation Unit (KLFMCU). Recommendation was made on how to improve fishermen cooperative for the development of the lake fisheries resources
Resumo:
In this reservoir, the parameters being assessed are very important in the aspect of fish culture. These parameters are: physical parameters which includes temperature (O), Transparency (M).Chemical parameters include: Dissolve oxygen (mg/l) pH concentration and the Biological Parameters which include phytoplankton and zooplankton. The phytoplankton and zooplankton identification and estimation were carried out in the NIFFR Limnology Laboratory, (Green House), New Bussa. Each identified zooplankton and phytoplankton species was placed according to its major group e.g. zooplankton was grouped into three families, Roifera, Cladocera and Copepods. During this study period it was observed that copepods have the highest total number of zooplankton both beside the poultry and monk (station 'A'&'B'). Water temperature of station 'A' (beside the poultry house) ranges from 27 C-29, 5 c also same station 'B' (near the monk). Dissolve oxygen station 'A' range from 6.30mg/l-7.40mg/l while that of station 'B' ranges from 6.20mg/7.50mg/l, turbidity reading of station A'ranges from 0.19m-0.3m while station 'B' ranges from 0.22m-0.37m. The last parameter, which is pH concentration, in both stations 8.2 was observed this is an indication that the pH was constant. According to some literature review all the water parameter figures obtained were good for fish culture
Resumo:
33 p.
Resumo:
[ES]Todo aquello, real o conceptual, que podamos imaginar aparece una vez que tiene un soporte físico. La insostenibilidad proviene del uso desaforado de los recursos naturales para satisfacer los deseos del presente, que lleva a una menor disponibilidad de los mismos en el largo plazo. Esto ocurre porque los flujos de materia y energía se modifican y también lo hacen los agentes que en ellos participan. La hoja de ruta para alcanzar la sostenibilidad es, por una parte, ir promoviendo un cambio de conciencia en el seno de la sociedad y a la vez, aplicar soluciones técnicas que lleven el sello de la sostenibilidad. Este cambio, es una actuación conjunta y necesita de la participación de todos los seres humanos para tener esperanzas de éxito. La ciudad, ecológicamente, es un agujero negro e incluye no sólo lo que es, sino también lo que necesita para mantenerse tal y como es. La planificación urbana ecológica intenta aunar lo urbano y lo sostenible, ya que tiene como propósito proponer áreas donde los asentamientos humanos sean favorables y produzcan menos repercusiones negativas en el entorno. Para lograrlo, energía, materiales constructivos, agua, residuos, zonas verdes, comunidad y la incidencia en la legislación son ámbitos en los que el planeamiento urbano sostenible debe actuar. Los seres humanos somos los poseedores de nuestro destino. Los resultados son consecuencia de las acciones. Si algo ocurre es porque nuestras acciones han sido las elegidas para que así sea.
Resumo:
The Chesapeake and Delaware Canal is a man-made waterway connecting the upper Chesapeake Bay with the Delaware Bay. It started in 1829 as a private barge canal with locks, two at the Delaware end, and one at the Chesapeake end. For the most part, natural tidal and non-tidal waterways were connected by short dredged sections to form the original canal. In 1927, the C and D Canal was converted to a sea-level canal, with a controlling depth of 14 feet, and a width of 150 feet. In 1938 the canal was deepened to 27 feet, with a channel width of 250 feet. Channel side slopes were dredged at 2.5:1, thus making the total width of the waterway at least 385 feet in those segments representing new cuts or having shore spoil area dykes rising above sea level. In 1954 Congress authorized a further enlargement of the Canal to a depth of 35 feet and a channel width of 450 feet. (pdf contains 27 pages)
Resumo:
This article describes the streams of this unique area of Britain and reviews the published and some unpublished information that is currently available. None of the rivers in the New Forest are more than 30 km long. Many reaches have been artificially straightened, channelized and regraded since the 1840's. The stream waters are typically base-poor, with low nutrient concentrations. Primary productivity and standing crops of algae are predictably low when compared with other streams carrying higher concentrations of minerals and nutrients. The earliest records on the macroinvertebrate fauna go back to the late 19th Century. By 1940, over 20 species of Trichoptera and 10 species of Plecoptera had been recorded, but only four species of Ephemeroptera. Twenty species of fish occur in the streams of the New Forest of which the most common are brown trout, minnow, bullhead, stone loach, brook lamprey and eel.
Resumo:
The ennoblement of human resources has become a prime issue in the philosophy of sustainable aquaculture development in the new millennium.Being the planners, designers, conductors and philosophers of sustainable aquaculture, human beings always demand their further improvement at level best from their current positions to bring supreme success in the sector. As sustainable aquaculture is socio-economic –cum-environmental in concept, its operation and management requires constant interplay of various human knowledge for ensuring its smooth direction and for achieving its goal. So, the arrangement of different types and levels of training and education are the great need for the development of personnel involved in sustainable aquaculture route and also for growing awareness of environmental issues. The modus operandi of training and education has to be changed systematically to answer the calls of the needs of the new millennium. In the developing and developed countries where aquaculture plays a vital role in promoting production of aquatic organisms, alleviating of poverty, ensuring environmental compatibility, replenishing and improving the natural stocks, increasing socio-economic upliftment through integrated development approach, developing and managing the aquatic resources, maintaining gene banks and preserving the diversity of fish stocks, it has been already proved that Human resources development (HRD) is inevitable to bring sustainable aquaculture and plays a great role in the flourishment of the system . Different types and levels of training of personnel required for sustainable aquaculture in the new millennium are brought forward in the study. The importance of human resources development (HRD) through specialized training to the personnel is also depicted.
Resumo:
How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner in which food and females promotes aggression.
In the first chapter, we explore how food controls aggression. As in many other species, food promotes aggression in flies, but it is not clear whether food increases aggression per se, or whether aggression is a secondary consequence of increased social interactions caused by aggregation of flies on food. Furthermore, nothing is known about how animals evaluate the quality and quantity of food in the context of competition. We show that food promotes aggression independently of any effect to increase the frequency of contact between males. Food increases aggression but not courtship between males, suggesting that the effect of food on aggression is specific. Next, we show that flies tune the level of aggression according to absolute amount of food rather than other parameters, such as area or concentration of food. Sucrose, a sugar molecule present in many fruits, is sufficient to promote aggression, and detection of sugar via gustatory receptor neurons is necessary for food-promoted aggression. Furthermore, we show that while food is necessary for aggression, too much food decreases aggression. Finally, we show that flies exhibit strategies consistent with a territorial strategy. These data suggest that flies use sweet-sensing gustatory information to guide their decision to fight over a limited quantity of a food resource.
Following up on the findings of the first chapter, we asked how the presence of a conspecific female resource promotes male-male aggression. In the absence of food, group-housed male flies, who normally do not fight even in the presence of food, fight in the presence of females. Unlike food, the presence of females strongly influences proximity between flies. Nevertheless, as group-housed flies do not fight even when they are in small chambers, it is unlikely that the presence of female indirectly increases aggression by first increasing proximity. Unlike food, the presence of females also leads to large increases in locomotion and in male-female courtship behaviors, suggesting that females may influence aggression as well as general arousal. Female cuticular hydrocarbons are required for this effect, as females that do not produce CH pheromones are unable to promote male-male aggression. In particular, 7,11-HD––a female-specific cuticular hydrocarbon pheromone critical for male-female courtship––is sufficient to mediate this effect when it is perfumed onto pheromone-deficient females or males. Recent studies showed that ppk23+ GRNs label two population of GRNs, one of which detects male cuticular hydrocarbons and another labeled by ppk23 and ppk25, which detects female cuticular hydrocarbons. I show that in particular, both of these GRNs control aggression, presumably via detection of female or male pheromones. To further investigate the ways in which these two classes of GRNs control aggression, I developed new genetic tools to independently test the male- and female-sensing GRNs. I show that ppk25-LexA and ppk25-GAL80 faithfully recapitulate the expression pattern of ppk25-GAL4 and label a subset of ppk23+ GRNs. These tools can be used in future studies to dissect the respective functions of male-sensing and female-sensing GRNs in male social behaviors.
Finally, in the last chapter, I discuss quantitative approaches to describe how varying quantities of food and females could control the level of aggression. Flies show an inverse-U shaped aggressive response to varying quantities of food and a flat aggressive response to varying quantities of females. I show how two simple game theoretic models, “prisoner’s dilemma” and “coordination game” could be used to describe the level of aggression we observe. These results suggest that flies may use strategic decision-making, using simple comparisons of costs and benefits.
In conclusion, male-male aggression in Drosophila is controlled by simple gustatory cues from food and females, which are detected by gustatory receptor neurons. Different quantities of resource cues lead to different levels of aggression, and flies show putative territorial behavior, suggesting that fly aggression is a highly strategic adaptive behavior. How these resource cues are integrated with male pheromone cues and give rise to this complex behavior is an interesting subject, which should keep researchers busy in the coming years.
Resumo:
JA-925
Resumo:
Lough Erne in Northern Ireland has been the subject of much research over the last 30 years by, amongst others, the Department of Agriculture and Rural Development (DARD). In this article, the authors provide a summary of a workshop held on the 16–17th October 2003 in Enniskillen, on the shores of Lough Erne, which gave an opportunity to step back and take a holistic look at the Erne lakes. Ecological change has been driven by many factors, including land use changes and species invasions. The workshop consisted of five sessions which are summarised in this article: Session 1 – Invasive species, nutrients, phytoplankton and macrophytes; Session 2 – Zooplankton, benthic macroinvertebrates and fish; Session 3 – An ecosystem approach – relating the previous sessions; Session 4 – How does Lough Erne fit into lake classifications? Implications of the Water Framework Directive; Session 5 – Using new techniques to examine food webs and species invasions. Identifying a future research programme for Lough Erne.
Resumo:
A escassez de água é um dos maiores desafios do nosso século. Parece mentira, uma vez que do planeta são ocupados por água. Essa abundância aparente leva-nos a considerar a água como um elemento barato, farto e inesgotável. Contudo, desse total, 97,5% são de água salgada, restando 2,5% de água doce, dos quais 1,75% formam geleiras, sendo, portanto, inacessíveis. E o pior: a exploração irracional da água doce armazenada nos lençóis subterrâneos, rios e lagos está ameaçando a magra fatia de 0,75% da água que pode ser usada pelo homem. Se a escassez e a poluição já são problemas concretos em muitos países, os quais já instituíram um efetivo gerenciamento de seus recursos hídricos, no Brasil a preocupação de cientistas e ambientalistas nem sempre é levada a sério. Afinal, temos mais de 12% da água potável do globo. No entanto, esta riqueza é extremamente mal distribuída: cerca de 80% estão na região amazônica; os 20% restantes distribuem-se desigualmente pelo país, atendendo a 95% da população. Cada vez que chove, milhões de litros de água, que normalmente deveram se infiltrar no solo correm pelos telhados e pelo asfalto até acabar em um rio poluído, sem nenhuma possibilidade de uso. E essa água pode e deve ser aproveitada, tanto para evitar enchentes quanto para economizar recursos hídricos e financeiros. Dessa forma, o objetivo deste trabalho foi o de estruturar um projeto de um sistema de coleta e aproveitamento da água de chuva, para fins não potáveis, para uma edificação a ser construída nas instalações de uma indústria de reparo e construção naval. Para tanto, foi apresentada uma metodologia cuja tecnologia para captação e aproveitamento da água de chuva baseou-se num levantamento bibliográfico e foi validada através da aplicação em um estudo de caso. Espera-se que este trabalho seja o ponto de partida para muitos outros dentro da indústria, procurando incentivar o aproveitamento da água de chuva para consumo não potável e criando assim uma consciência ecológica em todos os níveis da empresa, contribuindo dessa forma para a sustentabilidade.