797 resultados para Ecological Interface
Resumo:
Krameria plants are found in arid regions of the Americas and present a floral system that attracts oil-collecting bees. Niche modeling and multivariate tools were applied to examine ecological and geographical aspects of the 18 species of this genus, using occurrence data obtained from herbaria and literature. Niche modeling showed the potential areas of occurrence for each species and the analysis of climatic variables suggested that North American species occur mostly in deserted or xeric ecoregions with monthly precipitation below 140 mm and large temperature ranges. South American species are mainly found in deserted ecoregions and subtropical savannas where monthly precipitation often exceeds 150 mm and temperature ranges are smaller. Principal Component Analysis (PCA) performed with values of temperature and precipitation showed that the distribution limits of Krameria species are primarily associated with maximum and minimum temperatures. Modeling of Krameria species proved to be a useful tool for analyzing the influence of the ecological niche variables in the geographical distribution of species, providing new information to guide future investigations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Peponapis bees are considered specialized pollinators of Cucurbita flowers, a genus that presents several species of economic value (squashes and pumpkins). Both genera originated in the Americas, and their diversity dispersion center is in Mexico. Ten species of Peponapis and ten species of Cucurbita (only non-domesticated species) were analyzed considering the similarity of their ecological niche characteristics with respect to climatic conditions of their occurrence areas (abiotic variables) and interactions between species (biotic variables). The similarity of climatic conditions (temperature and precipitation) was estimated through cluster analyses. The areas of potential occurrence of the most similar species were obtained through ecological niche modeling and summed with geographic information system tools. Three main clusters were obtained: one with species that shared potential occurrence areas mainly in deserts (P. pruinosa, P. timberlakei, C. digitata, C. palmata, C. foetidissima), another in moist forests (P. limitaris, P. atrata, C. lundelliana, C. o. martinezii) and a third mainly in dry forests (C. a. sororia, C. radicans, C. pedatifolia, P. azteca, P. smithi, P. crassidentata, P. utahensis). Some species with similar ecological niche presented potential shared areas that are also similar to their geographical distribution, like those occurring predominantly on deserts. However, some clustered species presented larger geographical areas, such as P. pruinosa and C. foetidissima suggesting other drivers than climatic conditions to shape their distributions. The domestication of Cucurbita and also the natural history of both genera were considered also as important factors. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We investigated the evolution of anuran locomotor performance and its morphological correlates as a function of habitat use and lifestyles. We reanalysed a subset of the data reported by Zug (Smithson. Contrib. Zool. 1978; 276: 1-31) employing phylogenetically explicit statistical methods (n = 56 species), and assembled morphological data on the ratio between hind-limb length and snout-vent length (SVL) from the literature and museum specimens for a large subgroup of the species from the original paper (n = 43 species). Analyses using independent contrasts revealed that classifying anurans into terrestrial, semi-aquatic, and arboreal categories cannot distinguish between the effects of phylogeny and ecological diversification in anuran locomotor performance. However, a more refined classification subdividing terrestrial species into `fossorials` and `non-fossorials`, and arboreal species into `open canopy`, `low canopy` and `high canopy`, suggests that part of the variation in locomotor performance and in hind-limb morphology can be attributed to ecological diversification. In particular, fossorial species had significantly lower jumping performances and shorter hind limbs than other species after controlling for SVL, illustrating how the trade-off between burrowing efficiency and jumping performance has resulted in morphological specialization in this group.
Resumo:
Leiopelma hochstetteri is an endangered New Zealand frog now confined to isolated populations scattered across the North Island. A better understanding of its past, current and predicted future environmental suitability will contribute to its conservation which is in jeopardy due to human activities, feral predators, disease and climate change. Here we use ecological niche modelling with all known occurrence data (N = 1708) and six determinant environmental variables to elucidate current, pre-human and future environmental suitability of this species. Comparison among independent runs, subfossil records and a clamping method allow validation of models. Many areas identified as currently suitable do not host any known populations. This apparent discrepancy could be explained by several non exclusive hypotheses: the areas have not been adequately surveyed and undiscovered populations still remain, the model is over simplistic; the species` sensitivity to fragmentation and small population size; biotic interactions; historical events. An additional outcome is that apparently suitable, but frog-less areas could be targeted for future translocations. Surprisingly, pre-human conditions do not differ markedly highlighting the possibility that the range of the species was broadly fragmented before human arrival. Nevertheless, some populations, particularly on the west of the North Island may have disappeared as a result of human mediated habitat modification. Future conditions are marked with higher temperatures, which are predicted to be favourable to the species. However, such virtual gain in suitable range will probably not benefit the species given the highly fragmented nature of existing habitat and the low dispersal ability of this species. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
The genetic diversity and phylogeographical patterns of Trypanosoma species that infect Brazilian bats were evaluated by examining 1043 bats from 63 species of seven families captured in Amazonia, the Pantanal, Cerrado and the Atlantic Forest biomes of Brazil. The prevalence of trypanosonne-infected bats, as estimated by haemoculture, was 12.9%, resulting in 77 Cultures of isolates, most morphologically identified as Trypanosoma cf. cruzi, classified by barcoding using partial sequences from ssrRNA gene into the subgenus Schizotrypanum and identified as T. cruzi (15), T cruzi marinkellei (37) or T. cf. dionisii (25). Phylogenetic analyses using nuclear ssrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and mitochondrial cytochrome b (Cyt b) gene sequences generated three clades, which clustered together forming the subgenus Schizotrypanum. In addition to vector association, bat trypanosomes were related by the evolutionary history, ecology and phylogeography of the bats. Tryponosoma cf. dionisii trypanosomes (32.4%) infected 12 species from four bat families captured in all biomes, from North to South Brazil, and clustered with T. dionisii from Europe despite being separated by some genetic distance. Trypanosoma cruzi marinkellei (49.3%) was restricted to phyllostomid bats from Amazonia to the Pantanal (North to Central). Trypanosoma cruzi (18.2%) was found mainly in vespertilionid and phyllostomid bats from the Pantanal/Cerrado and the Atlantic Forest (Central to Southeast), with a few isolates from Amazonia. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.
Resumo:
In this work, we present a detailed study on the optical properties of two GaAs/Al(0.35)Ga(0.65)As coupled double quantum wells (CDQWs) with inter-well barriers of different thicknesses, by using photoluminescence (PL) spectroscopy. The two CDQWs were grown in a single sample, assuring very similar experimental conditions for measurements of both. The PL spectrum of each CDQW exhibits two recombination channels which can be accurately identified as the excitonic e(1)-hh(1) transitions originated from CDQWs of different effective dimensions. The PL spectra characteristics and the behavior of the emissions as a function of temperature and excitation power are interpreted in the scenario of the bimodal interface roughness model, taking into account the exciton migration between the two regions considered in this model and the difference in the potential fluctuation levels between those two regions. The details of the PL spectra behavior as a function of excitation power are explained in terms of the competition between the band gap renormalization (BGR) and the potential fluctuation effects. The results obtained for the two CDQWs, which have different degrees of potential fluctuation, are also compared and discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We apply a self-energy-corrected local density approximation (LDA) to obtain corrected bulk band gaps and to study the band offsets of AlAs grown on GaAs (AlAs/GaAs). We also investigate the Al(x)Ga(1-x)As/GaAs alloy interface, commonly employed in band gap engineering. The calculations are fully ab initio, with no adjustable parameters or experimental input, and at a computational cost comparable to traditional LDA. Our results are in good agreement with experimental values and other theoretical studies. Copyright (C) EPLA, 2011
Resumo:
The antiparasitic property of peptides is believed to be associated with their interactions with the protozoan membrane, which calls for research on the identification of membrane sites capable of peptide binding. In this study we investigated the interaction of a lipophilicglutathioine peptide known to be effective against the African Sleeping Sickness (ASS - African Trypanosomiasis) and cell membrane models represented by Langmuir monolayers. It is shown that even small amounts of the peptide affect the monolayers of some phospholipids and other lipids, which points to a significant interaction. The latter did not depend on the electrical charge of the monolayer-forming molecules but the peptide action was particularly distinctive for cholesterol + sphingomyelin monolayers that roughly resemble rafts on a cell membrane. Using in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), we found that the orientation of the peptide is affected by the phospholipids and dioctadecyldimethylammonium bromide (DODAB), but not in monolayers comprising cholesterol + sphingomyelin. In this mixed monolayer resembling rafts, the peptide still interacts and has some induced order, probably because the peptide molecules are fitted together into a compact monolayer. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic glutathioine peptide, and this may have important implications in understanding how the peptide acts on specific sites of the protozoan membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Stability and interface properties of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) films adsorbed from acetone or ethyl acetate onto Si wafers have been investigated by means of contact angle measurements and atomic force microscopy (AFM). Surface energy (gamma(total)(S)) values determined for CAP adsorbed from acetone are larger than those from ethyl acetate. In the case of CAB films adsorbed from ethyl acetate and acetone were similar. Dewetting was observed by AFM only for CAP films prepared from ethyl acetate. Positive values of effective Hamaker constant (A(eff)) were found only for CAP prepared from ethyl acetate, corroborating with dewetting phenomena observed by AFM. Oil the contrary, negative values of A(eff) were determined for CAP and CAB prepared from acetone and for CAB prepared from ethyl acetate, Corroborating with experimental observations. Sum frequency generation (SFG) vibrational spectra indicated that CAP and CAB films prepared from ethyl acetate present more alkyl groups oriented perpendicularly to the polymer-air interface than those films prepared from acetone. Such preferential orientation corroborates with macroscopic contact angle measurements. Moreover, SFG spectra showed that acetone hinds strongly to Si wafers, creating a new surface for CAP and CAB films. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated the process of ablation produced by a Ti:Sapphire femtosecond laser under different average powers taking place at the enamel/dentin interface. Based on the geometry of ablated microcavities the effective intensity for ablation was obtained. This study shows the validity for the local effective intensity analysis and allows a quantification of the variation in the ablation geometry taking place at the interface of two naturally different materials. It shows that the variation of the diameter of the ablated region as a function of the cavity depth comes essentially from a mechanism of effective intensity attenuation, as a result of a series of complex effects. Additionally, our data are sufficient to predict that a discontinuity on the ablation profile will occur on the interface between two biological media: enamel-dentin, showing a suddenly jump on the ablated cavity dimensions.
Resumo:
The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2`-palmitoyluridin und 3`-palmitoyluridin, forms Langmuir monolayers and Langmuir-Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV-vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The surface activity of salts added to water is Air orders of magnitude lower than that of surfactants. Sodium trifluoromethanesulfonate (NaTf) produced a change in surface tension. with concentration, Delta gamma/Delta c, of -13.2 mN.L/m.mol. This value is ca. 4-fold larger than those of simple salts and that of methanesulfonate. This unexpected surface effect suggested that positively charged micelles containing Tf could exhibit interesting properties. Dodecyltrimethylammonium triflate (DTATf) had a higher Kraft temperature (37 degrees C) and a lower cmc (5 x 10(-3)M) and degree of dissociation (0.11) than the chloride and bromide salts of DTA. Above the Kraft temperature, at a characteristic temperature t(1), the addition of NaTf above 0.05 M. to a DTATf solution induced phase separation. By increasing the temperature of the two-phase system to above t(1), a homogeneous, transparent solution was obtained at a characteristic temperature t(2). These results, together with well-known triflate properties, led us to suggest that the Tf ion pairs With DTA and that the -CF(3) group may be dehydrated in the interfacial region, resulting in new and interesting self-aggregated structures.
Resumo:
Understanding the behavior of petroleum films at the air/water interface is crucial for dealing with oil sticks and reducing the damages to the environment, which has normally been attempted with studies of Langmuir films made of fractions of petroleum. However, the properties of films from whole petroleum samples may differ considerably from those of individual fractions, Using surface pressure and surface potential measurements and Brewster angle and fluorescence microscopy, we show that petroleum forms it nonhomogeneous Langmuir film at the air-water interface. The surface pressure isotherms for petroleum Langmuir films exhibit gas (G), liquid-expanded (LE), and liquid-condensed phases, with almost no hysteresis in the compression-decompression cycles. Domains formed upon compression from the G to the LE phase were accompanied by an increase in fluorescence intensity with excitation at 400-440 nm owing to an increase in the surface density of the chromophores in the petroleum film. The surface pressure and the fluorescence microscopy data pointed to self-assembling domains into a pseudophase in thermo-dynamic equilibrium with other less emitting petroleum components. This hypothesis was supported by Brewster angle microscopy images, whereby the appearance of water domains even at high surface pressures confirms the tendency of petroleum to stabilize emulsion systems. The results presented here suggest that, for understanding the interaction with water, it may be more appropriate to use the whole petroleum samples rather than its fractions.