987 resultados para ETHYLENE POLYMERIZATION CATALYSTS
Resumo:
Cellulose phenylcarbamate derivatives having methacrylate groups were synthesized with regioselective and non-regioselective procedures. These derivatives were chemically immobilized onto a vinylized silica gel, respectively, via a radical co-polymerization reaction. The immobilization was efficiently attained using a small amount of AIBN. The chiral recognition abilities of the prepared chiral stationary phases (CSPs) were evaluated by HPLC resolution of test enantiomers. It was observed that most of the enantiomers were completely resolved with markedly high column efficiency of 30,000-40,000 plates per metre for the eluted peaks. The effect of the amount of methacrylolyl chloride used for preparation on resolution was investigated. A direct comparison of the chiral recognition ability was made on the regioselectively and non-regioselectively prepared CSPs. In addition, the chemically bonded-type of CSPs were found to be relatively stable with addition of solvents such as tetrahydrofuran (THF) and chloroform into the mobile phase, which can lead to the dissolution of cellulose derivatives on the coated CSPs. Thus the choice of solvents used as the mobile phase is greatly extended and better resolution of several test enantiomers was observed on the prepared CSPs with THF and chloroform as a composition in the mobile phase. The batch-to-batch and run-to-run reproducibility was also discussed on the newly prepared CSPs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A capillary electrochromatography (CEC) monolithic column with zwitterionic stationary phases was prepared by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, methacrylic acid, and 2-(dimethyl amino) ethyl methacrylate in the presence of porogens. The stationary phases have zwitterionic functional groups, that is, both tertiary amine and acrylic acid groups, so the ionization of those groups on the zwitterionic stationary phase was affected by the pH values of the mobile phase, and further affects the strength and direction of the electroosmotic flow (EOF). Separations of alkylbenzenes and polycylic aromatic hydrocarbons based on the hydrophobic mechanism were obtained. Separation of various types of polar compounds, including phenols, anilines, and peptides, on the prepared column were performed under CEC mode with anodic and cathodic EOF, and different separation selectivities of those polar analytes were observed on the monolithic capillary column by using mobile phases with different pH values.
Resumo:
In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt1Sn1/C > Pt1Ru1/C > Pt1W1/C > Pt1Pd1/C > Pt/C. Moreover, Pt1Ru1/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt1Sn1/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt1Sn1/C or Pt3Sn2/C or Pt2Sn1/C as anode catalyst showed better performances than those with Pt3Sn1/C or Pt4Sn1/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt1Ru1/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OHads, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low current density regions where the electro-oxidation of ethanol is considered not so fast and its chemisorption is not the rate-determining step, the Pt3Sn2/C seems to be more suitable for the direct ethanol fuel cell. At 75 degreesC, the single ethanol fuel cell with Pt3Sn2/C as anode catalyst showed a comparable performance to that with Pt2Sn1/C, but at higher temperature of 90 degreesC, the latter presented much better performance. It is thought from a practical point of view that Pt2Sn1/C, supplying sufficient -OHads and having adequate active Pt sites and acceptable ohmic effect, could be the appropriate anode catalyst for DEFC. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A comprehensive study on physical and chemical properties of Mo/MCM-22 bifunctional catalysts has been made by using combined analytic and spectroscopic techniques, such as adsorption, elemental analysis, and Xe-129 and P-31 NMR of adsorbed trialkylphosphine oxide probe molecules. Samples prepared by the impregnation method with Mo loadings ranging from 2-10 wt.% have been examined and the results are compared with that obtained from samples prepared by mechanical mixing using MoO3 or Mo2C as agents. Sample calcination treatment is essential in achieving a well-dispersed metal species in Mo/MCM-22. It was found that, upon initial incorporation, the Mo species tend to inactivate both Bronsted and Lewis sites locate predominantly in the supercages rather than the 10-membered ring channels of MCM-22. However, as the Mo loading exceeds 6 wt.%, the excessive Mo species tend to migrate toward extracrystalline surfaces of the catalyst. A consistent decrease in concentrations of acid sites with increasing Mo loading < 6 wt.% was found, especially for those with higher acid strengths. Upon loading of Mo > 6 wt.%, further decreases in both Bronsted and Lewis acidities were observed. These results provide crucial supports for interpreting the peculiar behaviors previously observed during the conversion of methane to benzene over Mo/MCM-22 catalyst under non-oxidative conditions, in which an optimal performance was achieved with a Mo loading of 6 wt.%. The effects of Mo incorporation on porosity and acidity features of the catalyst are discussed. (C) 2004 Published by Elsevier B.V.
Resumo:
By characterizing fresh and used Mo/HMCM-22 catalysts with ICP-AES, XRD, NH3-TPD technique, UV - Vis DRS and UV Raman spectroscopy, the reactivity of Mo species for methane partial oxidation into formaldehyde were directly studied with a new point of view. By comparing the fresh and used catalysts, it was found that the tetrahedral Mo species bonding chemically to the support surface were practically unchanged after the reaction, while the polymolybdate octahedral Mo species, which had a rather weak interaction with the MCM-22 zeolite, leached out during the reaction, especially when the Mo loading was high. Correspondingly, it was found from the time-on-stream reaction data that the HCHO yield remained unchanged, while COx decreased with the reaction time during the reaction. By combining the characterization results and the reaction data, it can be drawn that the isolated tetrahedral molybdenum oxo-species (T-d) is responsible for HCHO formation, while the octahedral polyoxomolybdate species (O-h) will lead to the total oxidation of methane.
Resumo:
Liquid phase hydrodechlorination of chlorinated benzenes was studied over Ni/active carbon (Ni/AC), Ni/gamma-Al2O3, Ni/SiO2 and Raney Ni. The complete dechlorination of chlorobenzene (ClBz) was realized at 333-343 K on Ni/AC under hydrogen atmosphere of 1.0 MPa in the presence of alkaline hydroxide. Dichloro- and trichlorobenzenes were also hydrodechlorinated with 50-95% yields of benzene under the similar conditions, as above. The reaction follows zero-order to ClBz concentration and 1.9 order to hydrogen pressure. The reaction does not proceed in the absence of alkaline hydroxide, suggesting the complete coverage of active nickel surface with produced chlorine and the removal of the chlorine ion with hydroxide ion as a rate-limiting step. The active catalysts were characterized by H-2 chemisorption and transmission electron microscopy techniques. The apparent activity strongly depends on the active area of nickel on catalyst surface. (C) 2004 Published by Elsevier B.V.
Resumo:
The role of acid strength of zeolites in liquid-phase alkylation of benzene with ethylene was studied over beta, MCM-22, and USY zeolites by means of adsorbing NH3 at different temperatures. The strong acid sites are active centers, while the weak acid sites are inactive. The selectivity behavior of the strong acid sites varies with the relative acid strength as well as the types of the zeolites.
Resumo:
The transformation of olefin to aromatics over ZSM-5 catalysts with different K-loadings has been investigated both in a continuous flow fixed-bed reactor and in a pulse microreactor. Investigation of variation of olefin aromatization activity with K-loadings shows that strong acid sites are indispensable for the converting of olefin to aromatics. As intermediates of olefin aromatization process, butadiene and cyclopentene not only show much higher aromatization activity than mono-olefins, but also can be transformed into aromatics over relatively weak acid sites of K/ZSM-5. A proposal is put forward, stating that among all the steps experienced in olefins aromatization, the formation of diene or cycloolfin from mono-olefins through hydrogen transfer is the key step and can be catalyzed by strong acid sites.
Resumo:
The reaction performance for CO hydration on a TiO2 catalyst under different calcination temperatures was investigated. Under reaction conditions of T = 573 K, P = 0.5 MPa, CO flow rate of 30 ml min(-1), TOS = 12 h, and CO/H2O (g) = 3/2 (mol), the TiO2 catalyst with a futile content of 18% shows a maximum alcohols STY of 1.81 Mg m(-2) h(-1). In addition, the catalyst deactivation and regeneration were discussed.
Resumo:
The oxidative dehydrogenation of ethane (ODE) with CO2 to C2H4 has been studied over a series of Cr-based catalysts using SiO2, Al2O3, (MCM-41 zeolite) MCM-41, MgO and Silicate-2 (Si-2) as the supports. TPR, NH3-TPD, and EPR characterizations of catalysts were carried out to investigate the reduction property of Cr species on different supports, the acidities of catalysts and Cr species of 6Cr/SiO2 catalysts, respectively.