944 resultados para ES-SAGD. pressure drop. heavy oil. reservoir modeling and simulation
Resumo:
In this work, experimental data for the system Lippia alba + CO2 is presented. The major constituents of the L. alba volatile oil are limonene and carvone. Thus, literature data for the systems limonene + CO2 and carvone + CO2, and the Peng-Robinson equation of state (PR-EOS) were used to select the operating temperature and pressure, which maximize the global yield in L. alba extract. Global yields were determined at 80, 100, and 120 bar and 40, 45, and 50 degrees C. L. alba extracts were also obtained by conventional processes (hydrodistillation, low-pressure ethanol extraction and Soxhlet ethanol). The chemical compositions of the extracts were determined by gas and thin layer chromatography (TLC). The secretor structures of L. alba were observed by scanning electron microscopy (SEM) before and after supercritical extraction. The largest yield (similar to 7%, mass of extract/mass of dry solid) of the CO2-extract was obtained at 318 K and 100 bar. The chemical compositions of the CO2-extracts were different from those of the extracts obtained by Soxhlet and low-pressure solvent extraction (LPSE) because of the co-extraction of heavy substances by ethanol. The operating conditions that maximized the carvone and limomene yields were 80 bar and 323 K (80 mass%) and 120 bar and 323 K (17 mass%), respectively. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
Petroleum can be associated or not with natural gas, but in both cases water is always present in its formation. The presence of water causes several problems, such as the difficulty of removing the petroleum from the reservoir rock and the formation of waterin-oil and oil-in-water emulsions. The produced water causes environmental problems, which should be solved to reduce the effect of petroleum industry in the environment. The main objective of this work is to remove simultaneously from the produced water the dispersed petroleum and dissolved metals. The process is made possible through the use of anionic surfactants that with its hydrophilic heads interacts with ionized metals and with its lipophilic tails interacts with the oil. The studied metals were: calcium, magnesium, barium, and cadmium. The surfactants used in this research were derived from: soy oil, sunflower oil, coconut oil, and a soap obtained from a mixture of 5wt.% coconut oil and 95wt.% animal fat. It was used a sample of produced water from Terminal de São Sebastião, São Paulo. As the concentration of the studied metals in produced water presented values close to 300 mg/L, it was decided to use this concentration as reference for the development of this research. Molecular absorption and atomic absorption spectroscopy were used to determine petroleum and metals concentrations in the water sample, respectively. A constant pressure filtration system was used to promote the separation of solid and liquid phases. To represent the behavior of the studied systems it was developed an equilibrium model and a mathematical one. The obtained results showed that all used surfactants presented similar behavior with relation to metals extraction, being selected the surfactant derived from soy oil for this purpose. The values of the partition coefficients between the solid and liquid phases " D " for the studied metals varied from 0.2 to 1.1, while the coefficients for equilibrium model " K " varied from 0.0002 and 0.0009. The removal percentile for oil with all metals associated was near 100%, showing the efficiency of the process
Resumo:
With the increasing industrialization of the planet caused by globalization, it has become increasingly common to search for highly resistant and durable materials for many diverse branches of activities. Thus, production and demand for materials that meet these requirements have constantly increased with time. In view of this, stainless steel is presented as one of the materials which are suitable applications, due to many features that are interesting for several segments of the industry. Concerns of oil companies over heavy oil reservoirs have grown steadily for the last decades. Rheological properties of these oils impair their transport in conventional flow systems. This problem has created the need to develop technologies to improve flow and transport, reducing operation costs so as to enable oil production in the reservoir. Therefore, surfactant-based chemical systems are proposed to optimize transport conditions, effected by reduction of interfacial tensions, thereby enhancing the flow of oil in ducts and reducing load losses by friction. In order to examine such interactions, a study on the wettability of metallic surfaces has been undertaken, represented by measuring of contact angle of surfactant solutions onto flat plates of 304 stainless steel. Aqueous solutions of KCl, surfactants and mixtures of surfactants, with linear and aromatic hydrocarbon chain and ethoxylation degrees ranging between 20 to 100, have been tested. The wettability was assessed by means of a DSA 100 krüss goniometer. The influence of roughness on the wettability was also investigated by machining and polished the stainless steel plates with sandpapers of references ranging between 100 of 1200. The results showed that sanding and polishing plates result in decrease of wettability. As for the solutions, they have provided better wettability of the stainless steel than the KCl solutions tested. It was also been concluded that surfactant mixtures is an option to be considered, since they promote interactions that generate satisfactory contact angles for a good wettability on the stainless steel plate. Another conclusion refers to the influence of the ethoxylation degree of the nonionic surfactant molecules on wettability. It has been observed that contact angles decrease with decreasing ethoxylation degrees. This leads us to conclude that molecules with higher ethoxylation degree, being more hydrophobic, decrease the interaction of water with the ducts, thereby reducing friction and improving the flow
Resumo:
In heavy oil fields there is a great difficulty of the oil to flow from the reservoir to the well, making its production more difficult and with high cost. Most of the original volumes of oil found in the world are considered unrecoverable by the use of the current methods. The injection of micellar solutions has a direct action in the oil interfacial properties, resulting in an enhanced oil recovery. The objective of this research was the study and selection of micellar solutions with ability to decrease the interfacial interactions between fluids and reservoir formation, increasing oil production. The selected micellar solutions were obtained using commercial surfactants and surfactants synthesized in laboratory, based on the intrinsic properties of these molecules, to use in the enhanced oil recovery. Petroleum Reservoirs were simulated using sandstone plugs from Botucatu formation. Experiments with conventional and enhanced oil recovery techniques were accomplished. The obtained results showed that all micellar solutions were able to enhance oil recovery, and the micellar solution prepared with a SB anionic surfactant, at 2% KCl solution, showed the best recovery factor. It was also accomplished an economic analysis with the SB surfactant solution. With the injection of 20% porous volume of micellar solution, followed by brine injection, the increment in petroleum recovery can reach 81% recovery factor in the 3rd porous volume injected. The increment in the total cost by the addition of surfactant to the injection water represents R$ 7.50/ton of injected fluid
Resumo:
In the last decade, biological purification of gaseous waste has become an important alternative to many conventional methods of exhaust air treatment. More recently, biofiltration has proved to be an effective and inexpensive method for the treatment of air contaminated with volatile organic compounds (VOCs). A biofilter consists in a reactor packed with a porous solid bed material, where the microorganisms are fixed. During the biofiltration process, polluted air is transported through the biofilter medium where the contaminant is degraded. Within the biofilm, the pollutants in the waste gases are energy and carbon sources for microbial metabolism and are transformed into CO2, water and biomass. The bed material should be characterized by satisfactory mechanical and physical properties as structure, void fraction, specific area and flow resistance. The aim of this research was the biofilter construction and study of the biological degradation of ethanol and toluene, as well as the modeling of the process. Luffa cylindrica is a brazilian fiber that was used as the filtering material of the present work. The parameters and conditions studied were: composition of nutrients solution; effect of microflorae strains, namely Pseudomanas putida and Rhodococcus rhodochrous; waste gas composition; air flow rate; and inlet load of VOCs. The biofilter operated in diffusion regime and the best results for remotion capacity were obtained when a microorganisms consortion of Pseudomanas putida and Rhodococcus rhodochrous,were used, with a gas flow rate of 1 m3.h-1 and molar ratio nitrogene/phosphore N/P=2 in the nutrients solution. The maximum remotion capacity for ethanol was around 90 g.m-3.h-1 and 50 g.m-3.h-1 to toluene. It was proved that toluene has inhibitory effect on the ethanol remotion When the two VOCs were present in the same waste gas, there was a decrease of 40% in ethanol remotion capacity. Luffa cylindrica does not present considerable pressure drop. Ottengraf and van Lith models were used to represent the results obtained for ethanol and toluene, respectively. The application of the transient model indicated a satisfactory approximation between the experimental results obtained for ethanol and toluene vapors biofiltration and the ones predicted it
Resumo:
For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process.
Resumo:
This paper aimed to assess the tocopherol content and evaluate the fatty acid profile in soybean oil supplemented with salvia extract during heating, so as to verify the isolated and synergistic effect of natural and synthetic antioxidants. In order to obtain the extract, the lyophilized and crushed salvia was subjected to extraction by ethyl alcohol for 30 min, with a 1:20 salvia:ethyl alcohol ratio, under continuous agitation. Afterwards, the mixture was filtered and the supernatant was subjected to the rotary evaporator at 40 °C. Later the control treatments, ES (3000 mg kg-1 salvia extract), TBHQ (50 mg kg-1), and mixture (ES+50 mg kg-1 TBHQ) were prepared and subjected to 180 °C for 20 h. Samples were taken in time intervals 0, 10, and 20 h and analysed in terms of tocopherol content and fatty acid profile. Regarding the tocopherol and fatty acid profile analysis, it was found that the extract proved efficient in oil protection, when added isolated to soybean oil subjected to thermo oxidation. According to the results, salvia extract is a viable alternative that might be applied in industrialized processing of oils as natural antioxidant.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Na atualidade, o estudo do desempenho térmico de um sistema de refrigeração por compressão de vapor representa uma ferramenta importante no auxílio do desenvolvimento de novos produtos ou melhoria dos já existentes. Um modelo de simulação em regime permanente foi elaborado para avaliar o desempenho do sistema frigorífico. O sistema estudado inclui uma Central de Ar Condicionado, modelo PA HILTON, constituída de um compressor alternativo do tipo semi-hermético, evaporador e condensador compacto de tubos e aletas e uma válvula de expansão termostática. O modelo do condensador considera três regiões distintas de troca de calor as quais são respectivamente a região de dessuperaquecimento, condensação e subresfriamento. Para a modelagem do evaporador, foram consideradas as regiões de evaporação e superaquecimento. No modelo de simulação foram utilizadas correlações adequadas para a estimativa dos coeficientes de transferência de calor e perda de pressão para cada região do evaporador e condensador. Não foram consideradas a transferência de calor e queda de pressão nas linhas de conexão entre os componentes. A solução do sistema de equações não lineares resultantes da modelagem matemática dos componentes do sistema simulado foi obtida utilizando-se o método das substituições sucessivas com o emprego do software Engineenng Equation Solver . Os resultados obtidos pelo modelo de simulação apresentaram erros inferiores a 9% em relação aos valores experimentais.
Resumo:
A extração com fluido supercrítico de materiais líquidos e sólidos despertou o interesse para aplicações industriais nas últimas décadas, mais particularmente sob o conceito de química verde e biorrefinarias, portanto é fundamental que se faça uma modelagem desse processo a fim de otimizar as condições operacionais e simular o processo. O objetivo geral deste trabalho consiste na determinação de parâmetros de transferência de massa do processo de extração supercrítica de matriz sólida, empregando o dióxido de carbono como solvente, a partir de dados cinéticos de extração e na avaliação sistemática de cinco modelos matemáticos para descrever as cinéticas de extração dos óleos da polpa e da casca do buriti, do óleo de açaí de da oleoresina de cúrcuma, medidas no Laboratório de Extração Supercrítica, da Faculdade de Engenharia Química (UFPA), a fim de contribuir para o estudo de ampliação de escala e análise de custo de produção. Foram avaliados os modelos de Tan e Liou, Goto et al. (1993), Martinez et al. (2003), Esquível et al. (1999), e Sovová (1994). A modelagem das cinéticas de extração foi realizada utilizando aplicativos computacionais desenvolvidos e validados neste trabalho a partir de diferentes dados experimentais publicados na literatura. Diante de 40 cinéticas medidas com diferentes equipamentos de extração, configurações de leito, tipos de matérias primas, preparo dos materiais, pressão e temperatura e outros parâmetros de processo (com destaque ao rendimento global e a vazão de solvente), foi construído um panorama dos resultados acerca da capacidade dos modelos de transferência de massa em descrever as mais diferentes curvas globais de extração. De forma geral, os modelos de Goto et al. (1993) e Sovová (1994) apresentaram as melhores previsões aos dados experimentais das matérias primas tratadas neste trabalho com menores valores de quadrado, erros relativo, faixa de erro e desvios padrão e valores de R2 próximos da unidade.
Resumo:
ABSTRACT: Hydrogenation of passion fruit (passiflora edulis) seed oil was carried out with a commercial nickel/silica catalyst under different experimental conditions. The influence of reaction parameters (reaction temperature, hydrogen pressure, amount of catalyst, agitation rate and reaction time) on the response variable (iodine value) was studied using a central composite rotatable design and six center points for replication. Under the experimental conditions used, the model response equations for the iodine value showed good agreement with the experimental results.
Resumo:
A modelagem acústica fornece dados úteis para avaliação de metodologias de processamento e imageamento sísmico, em modelos com estrutura geológica complexa. Esquemas de diferenças finitas (DF) e elementos finitos (EF) foram implementados e avaliados em modelos homogêneos e heterogêneos. O algoritmo de diferenças finitas foi estendido para o caso 2,5-D em modelos com densidade variável. Foi apresentada a modelagem de alvos geológicos de interesse exploratório existentes na Bacia Paleozóica do Solimões na Amazônia. Reflexões múltiplas de longo período produzidas entre a superfície livre e a discordância Cretáceo-Paleozóica, a baixa resolução da onda sísmica nas proximidades do reservatório e as fracas reflexões na interface entre as rochas reservatório e as rochas selantes são as principais características dos dados sintéticos obtidos, os quais representam um grande desafio ao imageamento sísmico.
Resumo:
Os Hidrocarbonetos Policíclicos Aromáticos (HPAs) são poluentes de efeito tóxico, prejudiciais ao meio ambiente e à saúde humana, fazem parte de um grupo de compostos poluentes orgânicos persistentes (POPs), que por suas características tem impactado o ambiente, sendo por esse motivo bastante estudados. Podem estar presentes nas formas particulada, dissolvida e/ou gasosa, estando presentes em diferentes ambientes; solo, sedimento, ar, água, material particulado na atmosfera, organismos e alimentos (Kennish, 2007). As fontes naturais de HPAs incluem atividades vulcânicas, queimadas naturais, exsudação de óleos, além de processos biogênicos. HPAs antrogênicos podem ocorrer pela combustão incompleta de óleos combustíveis (automotores e industriais), queima intencional de madeira e plantações, efluentes domésticos e/ou industriais, drenagens pluviais urbanas, derrames acidentais de óleos e derivados. Hidrofóbicos e lipofílicos, essas substâncias podem ser facilmente adsorvidas em sedimentos, sendo este compartimento um importante reservatório desses poluentes. Para avaliar a presença desses compostos no ambiente, utilizou-se nesse trabalho a Cromatografia Líquida de Alta Eficiência. As amostras utilizadas no desenvolvimento e otimização da metodologia foram coletadas na baia do Guajará (Belém – PA). O presente trabalho constituiu-se dessa forma em um desenvolvimento de um procedimento metodológico (com adaptações e otimizações) para quantificar 16 HPAs em 10 pontos na baia do Guajará, Belém – PA, em duas etapas de campo, totalizando 20 amostras analisadas. Na etapa de desenvolvimento do método analítico foram testados sistemas de eluição, polaridade do sistema e fluxo do eluente entre outros. Para validação do método foram avaliados os parâmetros fidelidade, linearidade, limite de detecção, limite de quantificação do método. Razões diagnósticas foram calculadas para identificação das fontes primárias do HPAs encontrados na baia. Foram identificadas, a partir de razões diagnósticas da ΣHPAs BMM/ΣHPAsAMM; Fen/Ant; Flt/Pir; Ant/Σ178; Flt/Σ202; B(a)P/Σ228 e Ind(123cd) pireno/Σ276 as fontes primárias dos 16 HPAs estudados no sedimento da baia. A somatória das concentrações dos HPAs leves na primeira etapa de campo, variou de 132,13 ng.g-1 a 1704,14 ng.g-1, a ΣHPAs dos pesados de 125,82 g.g-1 a 1269,71 ng.g-1 e ΣHPAs totais de 317,84 ng.g-1 a 3117,06 ng.g-1.. Na segunda etapa de campo, as concentrações dos HPAs leves variou de 76,12 ng.g-1 a 1572,80 ng.g-1 ; a ΣHPAs pesados variou entre 213,90 ng.g-1 a 1423,03 ng.g-1, e Σ HPAs totais teve concentrações de 290,02 ng.g-1 a 2995,82 ng.g-1. A partir dos resultados obtidos pode-se classificar a baia do Guajará como moderadamente impactada. A combustão constitui a fonte predominante de HPAs nos sedimentos da baia do Guajará, seguida da combustão de biomassa vegetal e aporte de petróleo e derivados. A maioria dos pontos estudados nesse trabalho, nas duas etapas de campo, apresentaram concentrações de HPAs individuais acima dos VGQS.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Several studies have demonstrated that one exercise session (ES) on a cycloergometer or ergometric treadmill causes a reduction in blood pressure (BP). However, there are few similar studies on walking, which is the exercise modality most available to the elderly. We investigated the immediate and 24-h effects of walking on BP in independent, community-living elderly individuals. Volunteers participated in a single ES and resting control session (CS). Before and after each session, BP was measured by auscultatory and oscillometric methods. After each session, 24-h ambulatory blood pressure monitoring was conducted. An accelerometer was installed 48 h before the sessions and left in place for 5 days. The mean volunteer age was 67.7 +/- 3.5 years; 11 were hypertensive patients under treatment, and 12 were normotensive. In the total sample, there were immediate 14mm Hg and 12 mm Hg reductions in systolic BP (SBP) after the ES according to the auscultatory and oscillometric methods, respectively. Diastolic BP (DBP) was reduced by 4 mm Hg after the ES according to both methods. SBP during wakefulness and sleep and DBP during wakefulness were lower after the ES than after the CS (P<0.01), when wakefulness and sleep were determined individually (variable-time pattern) using data from the activity monitors and provided by the volunteers. The variable-time pattern was more effective in detecting reductions in BP than the fixed-time pattern. Hypertension Research (2012) 35, 457-462; doi: 10.1038/hr.2011.227; published online 9 February 2012