993 resultados para ENANTIOSELECTIVE SYNTHESIS
Resumo:
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Resumo:
The first examples of stable spirodiazaselenurane and spirodiazatellurane were synthesized by oxidative spirocyclization of the corresponding diaryl selenide and telluride and were structurally characterized. X-ray crystal structures of the spirodiazaselenurane and spirodiazatellurane suggest that the structures are distorted trigonal bipyramidal (TBP) with the electronegative nitrogen atoms occupying the apical positions and two carbon atoms and the lone pair of Se/Te occupying the equatorial positions. Interestingly, the spirodiazatellurane underwent spontaneous chiral resolution during crystallization, and the absolute configurations of its enantiomers were confirmed by single-crystal X-ray analyses. A detailed mechanistic study indicates that the cyclization to spirodiazaselenurane and spirodiazatellurane occurs via selenoxide and telluroxide intermediates. The chalcogenoxides cyclize to the corresponding spiro compounds in a stepwise manner via the involvement of hydroxyl chalcogenurane intermediates, and the activation energy for them spirocyclization reaction decreases in the order S > Se > Te. In addition to the synthesis, characterization, and mechanism of cyclization, the glutathione peroxidase (GPx) mimetic activity of the newly synthesized compounds was evaluated. These studies suggest that the tellurium compounds are more effective as GPx mimics than their selenium counterparts due to the fast oxidation of the tellurium center in the presence of peroxide and the involvement of an efficient redox cycle between the telluride and telluroxide intermediate.
Resumo:
Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC50 of similar to 3.25 mu M (MIC = 13.2 mu M) and IC50 4.21 mu M (MIC = 14.4 mu M), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC50 of 0.48, 0.87, 0.92 mu M and CQ-R P. falcipartan at IC50 of 0.45 mu M, 0.89, 0.75 mu M, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falcipartan inhibitors and promising candidates for the design of novel anti-malarial agents. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Coating of azobenzene chromophore with multivalent sugar ligands has been accomplished. Such sugar coating allows the study of the isomerization properties of this chromophore in aqueous solutions. The predominantly cis-isomer-containing photostationary state (PS) mixture of these azobenzene derivatives is found to be stable for hours. The rate constants for their isomerization, as well as the Arrhenius activation energies, are determined experimentally. An assessment of the lectin binding properties of the lactoside bearing isomeric azobenzene derivatives, by isothermal calorimetric methods, reveals the existence of an unusual cooperativity in their binding to lectin peanut agglutinin. Thermodynamic parameters evaluated for the trans and the PS mixture are discussed, in detail, for the lactoside bearing bivalent azobenzene derivative.
Resumo:
Complex typeN-linked oligosaccharides derived from fetuin, fibrinogen and thyroglobulin were coupled to acetyltyrosine affording a series of neoglycopeptides with retention of terminal structures and the beta-anomeric configuration of their reducing endN-acetylglycosamine residue. The neoglycopeptides thus synthesized could be labelled to high specific activities with125I in the aromatic side chain of tyrosine. Analysis of the fate of these neoglycopeptides in conjunction with inhibition with asialofetuin and oligosaccharides of defined structure in micein vivo revealed the uptake of galactosylated biantennary compound by kidneys, in addition to the known itinerary of triantennary galactosylated complex oligosaccharide from fetuin to liver and the galactosylated biantennary chain with fucosylation in the core to bone marrows. On the other hand, the agalacto, aglucosamino biantennary chains with and without fucosylation in the core region are taken up by submaxillary glands while the conserved trimannosyl core with fucose is primarily concentrated in stomach tissue. These studies thus define new routes for the uptake of complexN-linked glycans and also subserve to identify lectins presumably involved in their recognition.
Resumo:
Polyaniline salts have been synthesized by chemical oxidative polymerization of aniline in the presence of phenoxy acetic acid and its two derivatives using emulsion method at room temperature and characterized by different techniques such as infrared, H-1 and C-13 NMR, UV-visible spectroscopy, SEM, wide angle X-ray diffractograms and conductivity measurements. These polyaniline salts have the desirable property of high solubility for processibility in solvents such as DNIF, DMSO and a mixture of CHCl3 and acetone and they exhibit fairly good conductivity of similar to 3.0 x 10(-3) S cm(-1). The variations in solubility, conductivity and morphology with the protonating strength of the dopants are examined.
Resumo:
Nanocrystalline hydroxyapatite (HAp) exhibits better bioactivity and biocompatibility with enhanced mechanical properties compared to the microcrystalline counterpart. In the present work, nanocrystalline hydroxyapatite was synthesized by wet chemical method. Sintering was carried out with nanocrystalline alumina as additive, the content of alumina being varied from 10 to 30 wt% in the composite. For 20 and 30 wt % Al2O3, hydroxyapatite decomposed into tricalcium phosphate (TCP) above the sintering temperature of 1100 degrees C. The fracture toughness of nano HAp-nano Al2O3 composite is anisotropic in nature and reached a maximum value of 6.9 MPa m(1/2).
Resumo:
Dinuclear ((VVV)-V-IV) oxophenoxovanadates of general formula [V2O3L] have been synthesized in excellent yields by reacting bis(acetylacetonato)oxovanadium(IV) with H3L in a 2:1 ratio in acetone under an N-2 atmosphere. Here L3- is the deprotonated form of 2,6-bis[{{(2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L1), 2,6-bis[{{(5-methyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L2) 2,6-bis[ {{(5-tert-butyl-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenoI (H3L3), 2,6-bis[{{(5-chloro-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L4) , 2,6-bis[{{(5-bromo-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L5), or 2,6-bis[{{(5-methoxy-2-hydroxybenzyl)(N',N'-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol (H3L6). In [V2O3L1], both the metal atoms have distorted octahedral geometry. The relative disposition of two terminal V=O groups in the complex is essentially cis. The O=V...V=O torsion angle is 24.6(2)degrees. The V-O-oxo-V and V-O-phenoxo-V angles are 117.5(4) and 93.4(3)degrees, respectively. The V...V bond distance is 3.173(5) Angstrom. X-ray crystallography, IR, UV-vis, and H-1 and V-51 NMR measurements show that the mixed-valence complexes contain two indistinguishable vanadium atoms (type 111). The thermal ellipsoids of O2, O4, C10, C14, and C15 also suggests a type III complex in the solid state. EPR spectra of solid complexes at 77 K display a single line indicating the localization of the odd electron (3d(xy)(1)). Valence localization at 77 K is also consistent with the V-51 hyperfine structure of the axial EPR spectra (3d(xy)(1) ground state) of the complexes in frozen (77 K) dichloromethane solution: S = 1/2, g(parallel to) similar to 1.94, g(perpendicular to) similar to 1.98, A(parallel to) similar to 166 x 10(-4) cm(-1), and A(perpendicular to) similar to 68 x 10(-4) cm(-1). In contrast isotropic room-temperature solution spectra of the family have 15 hyperfine lines (g(iso) similar to 1.974 and A(iso) similar to 50 x 10(-4) cm(-1)) revealing that the unpaired electron is delocalized between the metal centers. Crystal data for the [V2O3L1].CH2Cl2 complex are as follows: chemical formula, C32H43O6N4C12V2; crystal system, monoclinic; space group, C2/c; a = 18.461(4), b = 17.230(3), c = 13.700(3) Angstrom; beta = 117.88(3)degrees; Z = 8.
Resumo:
The reverse regio- and diastereoselectivities are observed between the reactions involving 5- and 6-membered-ring cyclic carbonyl ylide dipoles with alpha-methylene ketones. A mild catalytic route to synthesize spirocyclic systems with high regio-, chemo- and diastereoselectivities is described.
Resumo:
The synthesis, characterization and photophysical properties of a 4f-3d mixed metal compound, Gd(H2O)(3)Co[C5N1H3-(COO)(2)](3), are described; the structure is unique, consisting of sheets with large pores ( ca. 7 angstrom diameter) in the sheets and transforms to a perovskite oxide at moderate temperatures.
Resumo:
By a series of reactions the Diels-Alder adduct IV of maleic anhydride and β-trans-Ocimene gave 1-hydroxy-1,4-dimethyl-7-hydroxymethyloctahydroindane (XII). Its further synthetic elaboration furnished 1,4-dimethyl-7-(2-ethoxycarbonyl-1-propenyl)-Δ1-octahydroindane of the valerenic acid skeleton.
Resumo:
The effect of dietary cholesterol and ubiquinone on the synthesis of isoprene compounds in the liver, as tested by the incorporation of acetate-1-14C and mevalonate-2-14C, was studied in rats. In cholesterol feeding, there appears to be a second site of inhibition after squalene in addition to the previously known primary site of inhibition at the β-hydroxy-β-methyl glutaryl-CoA reductase. Feeding ubiquinone inhibited at some common step between acetate and mevalonate in the synthesis of both cholesterol and ubiquinone, without affecting the acetate activation or fatty acid synthesis, and also at a step in the synthesis of ubiquinone not common with the synthesis of cholesterol. These results are suggestive of a role for ubiquinone in the regulation of isoprene synthesis.