952 resultados para EEG signal classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Event-triggered sampling (ETS) is a new approach towards efficient signal analysis. The goal of ETS need not be only signal reconstruction, but also direct estimation of desired information in the signal by skillful design of event. We show a promise of ETS approach towards better analysis of oscillatory non-stationary signals modeled by a time-varying sinusoid, when compared to existing uniform Nyquist-rate sampling based signal processing. We examine samples drawn using ETS, with events as zero-crossing (ZC), level-crossing (LC), and extrema, for additive in-band noise and jitter in detection instant. We find that extrema samples are robust, and also facilitate instantaneous amplitude (IA), and instantaneous frequency (IF) estimation in a time-varying sinusoid. The estimation is proposed solely using extrema samples, and a local polynomial regression based least-squares fitting approach. The proposed approach shows improvement, for noisy signals, over widely used analytic signal, energy separation, and ZC based approaches (which are based on uniform Nyquist-rate sampling based data-acquisition and processing). Further, extrema based ETS in general gives a sub-sampled representation (relative to Nyquistrate) of a time-varying sinusoid. For the same data-set size captured with extrema based ETS, and uniform sampling, the former gives much better IA and IF estimation. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB 3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm 15] over two real road networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wrist pulse signal contains more important information about the health status of a person and pulse signal diagnosis has been employed in oriental medicine since very long time. In this paper we have used signal processing techniques to extract information from wrist pulse signals. For this purpose we have acquired radial artery pulse signals at wrist position noninvasively for different cases of interest. The wrist pulse waveforms have been analyzed using spatial features. Results have been obtained for the case of wrist pulse signals recorded for several subjects before exercise and after exercise. It is shown that the spatial features show statistically significant changes for the two cases and hence they are effective in distinguishing the changes taking place due to exercise. Support vector machine classifier is used to classify between the groups, and a high classification accuracy of 99.71% is achieved. Thus this paper demonstrates the utility of the spatial features in studying wrist pulse signals obtained under various recording conditions. The ability of the model to distinguish changes occurring under two different recording conditions can be potentially used for health care applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with processing the EEG signals obtained from 16 spatially arranged electrodes to measure coupling or synchrony between the frontal, parietal, occipital and temporal lobes of the cerebrum under the eyes open and eyes closed conditions. This synchrony was measured using magnitude squared coherence, Short Time Fourier Transform and wavelet based coherences. We found a pattern in the time-frequency coherence as we moved from the nasion to the inion of the subject's head. The coherence pattern obtained from the wavelet approach was found to be far more capable of picking up peaks in coherence with respect to frequency when compared to the regular Fourier based coherence. We detected high synchrony between frontal polar electrodes that is missing in coherence plots between other electrode pairs. The study has potential applications in healthcare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies a pilot-assisted physical layer data fusion technique known as Distributed Co-Phasing (DCP). In this two-phase scheme, the sensors first estimate the channel to the fusion center (FC) using pilots sent by the latter; and then they simultaneously transmit their common data by pre-rotating them by the estimated channel phase, thereby achieving physical layer data fusion. First, by analyzing the symmetric mutual information of the system, it is shown that the use of higher order constellations (HOC) can improve the throughput of DCP compared to the binary signaling considered heretofore. Using an HOC in the DCP setting requires the estimation of the composite DCP channel at the FC for data decoding. To this end, two blind algorithms are proposed: 1) power method, and 2) modified K-means algorithm. The latter algorithm is shown to be computationally efficient and converges significantly faster than the conventional K-means algorithm. Analytical expressions for the probability of error are derived, and it is found that even at moderate to low SNRs, the modified K-means algorithm achieves a probability of error comparable to that achievable with a perfect channel estimate at the FC, while requiring no pilot symbols to be transmitted from the sensor nodes. Also, the problem of signal corruption due to imperfect DCP is investigated, and constellation shaping to minimize the probability of signal corruption is proposed and analyzed. The analysis is validated, and the promising performance of DCP for energy-efficient physical layer data fusion is illustrated, using Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of multiplicative noise on a signal when compared with that of additive noise is very large. In this paper, we address the problem of suppressing multiplicative noise in one-dimensional signals. To deal with signals that are corrupted with multiplicative noise, we propose a denoising algorithm based on minimization of an unbiased estimator (MURE) of meansquare error (MSE). We derive an expression for an unbiased estimate of the MSE. The proposed denoising is carried out in wavelet domain (soft thresholding) by considering time-domain MURE. The parameters of thresholding function are obtained by minimizing the unbiased estimator MURE. We show that the parameters for optimal MURE are very close to the optimal parameters considering the oracle MSE. Experiments show that the SNR improvement for the proposed denoising algorithm is competitive with a state-of-the-art method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a technique to cause unidirectional ion ejection in a quadrupole ion trap mass spectrometer operated in the resonance ejection mode. In this technique a modified auxiliary dipolar excitation signal is applied to the endcap electrodes. This modified signal is a linear combination of two signals. The first signal is the nominal dipolar excitation signal which is applied across the endcap electrodes and the second signal is the second harmonic of the first signal, the amplitude of the second harmonic being larger than that of the fundamental. We have investigated the effect of the following parameters on achieving unidirectional ion ejection: primary signal amplitude, ratio of amplitude of second harmonic to that of primary signal amplitude, different operating points, different scan rates, different mass to charge ratios and different damping constants. In all these simulations unidirectional ejection of destabilized ions has been successfully achieved. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional magnetic recording (2-D TDMR) is an emerging technology that aims to achieve areal densities as high as 10 Tb/in(2) using sophisticated 2-D signal-processing algorithms. High areal densities are achieved by reducing the size of a bit to the order of the size of magnetic grains, resulting in severe 2-D intersymbol interference (ISI). Jitter noise due to irregular grain positions on the magnetic medium is more pronounced at these areal densities. Therefore, a viable read-channel architecture for TDMR requires 2-D signal-detection algorithms that can mitigate 2-D ISI and combat noise comprising jitter and electronic components. Partial response maximum likelihood (PRML) detection scheme allows controlled ISI as seen by the detector. With the controlled and reduced span of 2-D ISI, the PRML scheme overcomes practical difficulties such as Nyquist rate signaling required for full response 2-D equalization. As in the case of 1-D magnetic recording, jitter noise can be handled using a data-dependent noise-prediction (DDNP) filter bank within a 2-D signal-detection engine. The contributions of this paper are threefold: 1) we empirically study the jitter noise characteristics in TDMR as a function of grain density using a Voronoi-based granular media model; 2) we develop a 2-D DDNP algorithm to handle the media noise seen in TDMR; and 3) we also develop techniques to design 2-D separable and nonseparable targets for generalized partial response equalization for TDMR. This can be used along with a 2-D signal-detection algorithm. The DDNP algorithm is observed to give a 2.5 dB gain in SNR over uncoded data compared with the noise predictive maximum likelihood detection for the same choice of channel model parameters to achieve a channel bit density of 1.3 Tb/in(2) with media grain center-to-center distance of 10 nm. The DDNP algorithm is observed to give similar to 10% gain in areal density near 5 grains/bit. The proposed signal-processing framework can broadly scale to various TDMR realizations and areal density points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood travels throughout the body and thus its flow is modulated by changes in body condition. As a consequence, the wrist pulse signal contains important information about the status of the human body. In this work we have employed signal processing techniques to extract important information from these signals. Radial artery pulse pressure signals are acquired at wrist position noninvasively for several subjects for two cases of interest, viz. before and after exercise, and before and after lunch. Further analysis is performed by fitting a bi-modal Gaussian model to the data and extracting spatial features from the fit. The spatial features show statistically significant (p < 0.001) changes between the groups for both the cases, which indicates that they are effective in distinguishing the changes taking place due to exercise or food intake. Recursive cluster elimination based support vector machine classifier is used to classify between the groups. A high classification accuracy of 99.71% is achieved for the exercise case and 99.94% is achieved for the lunch case. This paper demonstrates the utility of certain spatial features in studying wrist pulse signals obtained under various experimental conditions. The ability of the spatial features in distinguishing changing body conditions can be potentially used for various healthcare applications. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a multiple initialization based spectral peak tracking (MISPT) technique for heart rate monitoring from photoplethysmography (PPG) signal. MISPT is applied on the PPG signal after removing the motion artifact using an adaptive noise cancellation filter. MISPT yields several estimates of the heart rate trajectory from the spectrogram of the denoised PPG signal which are finally combined using a novel measure called trajectory strength. Multiple initializations help in correcting erroneous heart rate trajectories unlike the typical SPT which uses only single initialization. Experiments on the PPG data from 12 subjects recorded during intensive physical exercise show that the MISPT based heart rate monitoring indeed yields a better heart rate estimate compared to the SPT with single initialization. On the 12 datasets MISPT results in an average absolute error of 1.11 BPM which is lower than 1.28 BPM obtained by the state-of-the-art online heart rate monitoring algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shallow-trench isolation drain extended pMOS (STI-DePMOS) devices show a distinct two-stage breakdown. The impact of p-well and deep-n-well doping profile on breakdown characteristics is investigated based on TCAD simulations. Design guidelines for p-well and deep-n-well doping profile are developed to shift the onset of the first-stage breakdown to a higher drain voltage and to avoid vertical punch-through leading to early breakdown. An optimal ratio between the OFF-state breakdown voltage and the ON-state resistance could be obtained. Furthermore, the impact of p-well/deep-n-well doping profile on the figure of merits of analog and digital performance is studied. This paper aids in the design of STI drain extended MOSFET devices for widest safe operating area and optimal mixed-signal performance in advanced system-on-chip input-output process technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we describe a system, which recognises open vocabulary, isolated, online handwritten Tamil words and extend it to recognize a paragraph of writing. We explain in detail each step involved in the process: segmentation, preprocessing, feature extraction, classification and bigram-based post-processing. On our database of 45,000 handwritten words obtained through tablet PC, we have obtained symbol level accuracy of 78.5% and 85.3% without and with the usage of post-processing using symbol level language models, respectively. Word level accuracies for the same are 40.1% and 59.6%. A line and word level segmentation strategy is proposed, which gives promising results of 100% line segmentation and 98.1% word segmentation accuracies on our initial trials of 40 handwritten paragraphs. The two modules have been combined to obtain a full-fledged page recognition system for online handwritten Tamil data. To the knowledge of the authors, this is the first ever attempt on recognition of open vocabulary, online handwritten paragraphs in any Indian language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider applying derived knowledge base regarding the sensitivity and specificity of damage(s) to be detected by an SHM system being designed and qualified. These efforts are necessary toward developing capabilities in SHM system to classify reliably various probable damages through sequence of monitoring, i.e., damage precursor identification, detection of damage and monitoring its progression. We consider the particular problem of visual and ultrasonic NDE based SHM system design requirements, where the damage detection sensitivity and specificity data definitions for a class of structural components are established. Methodologies for SHM system specification creation are discussed in details. Examples are shown to illustrate how the physics of damage detection scheme limits particular damage detection sensitivity and specificity and further how these information can be used in algorithms to combine various different NDE schemes in an SHM system to enhance efficiency and effectiveness. Statistical and data driven models to determine the sensitivity and probability of damage detection (POD) has been demonstrated for plate with varying one-sided line crack using optical and ultrasonic based inspection techniques.