918 resultados para EEG SIGNALS
Resumo:
Theta burst transcranial magnetic stimulation (TBS) may induce behavioural changes that outlast the stimulation period. The neurophysiological basis of these behavioural changes are currently under investigation. Given the evidence that cortical information processing relies on transient synchronization and desynchronization of neuronal assemblies, we set out to test whether TBS is associated with changes of neuronal synchronization as assessed by surface EEG. In four healthy subjects one TBS train of 600 pulses (200 bursts, each burst consisting of 3 pulses at 30 Hz, repeated at intervals of 100 ms) was applied over the right frontal eye field and EEG synchronization was assessed in a time-resolved manner over 60 min by using a non-overlapping moving window. For each time step the linear cross-correlation matrix for six EEG channels of the right and for the six homotopic EEG channels of the left hemisphere were computed and their largest eigenvalues used to assess changes of synchronization. Synchronization was computed for broadband EEG and for the delta, theta, alpha, beta and gamma frequency bands. In all subjects EEG synchronization of the stimulated hemisphere was significantly and persistently increased relative to EEG synchronization of the unstimulated hemisphere. This effect occurred immediately after TBS for the theta, alpha, beta and gamma frequency bands and 10-20 min after TBS for broadband and delta frequency band EEG. Our results demonstrate that TBS is associated with increased neuronal synchronization of the cerebral hemisphere ipsilateral to the stimulation site relative to the unstimulated hemisphere. We speculate that enhanced synchronization interferes with cortical information processing and thus may be a neurophysiological correlate of the impaired behavioural performance detected previously.
Resumo:
OBJECTIVES: The aim of this single-blind randomized crossover study was to evaluate specific effects of manual acupuncture on central and vegetative nervous system activity measured by quantitative electroencephalography (qEEG) and heart rate variability (HRV). DESIGN: Twenty (20) healthy volunteers (mean: 25.2 +/- 3.6 years) were monitored simultaneously using a qEEG system and a 12-channel electrocardiogram recorder during verum acupuncture (VA) at acupuncture point Large Intestine 4 (Hegu) (LI4) or placebo acupuncture (PA) at a sham point. RESULTS: In the EEG conduction of the occipital area, needle stimulation in VA increased alpha1-frequency significantly, and the ratio alpha1/theta was shifted to the benefit of alpha1 over all electrodes. The HRV parameters showed a significant increase of the low frequency/high frequency (HF) ratio during the first minute of stimulation in VA, indicating an initial increase of sympathetic activation. However, an increase of HF power in the minute after stimulation followed by a decrease in heart rate suggests delayed vagal activation. De qi (a sensation that is typical of acupuncture needling) occurred in 16 subjects during VA and in 9 volunteers during PA (80% versus 45%). CONCLUSIONS: Manual stimulation on LI4 seems to lead to specific changes in alpha EEG-frequency and in HRV parameters. A linear relationship between the HRV parameters and the alpha EEG band might point to a specific modulation of cerebral function by vegetative effects during acupuncture.
Resumo:
Geospatial information systems are used to analyze spatial data to provide decision makers with relevant, up-to-date, information. The processing time required for this information is a critical component to response time. Despite advances in algorithms and processing power, we still have many “human-in-the-loop” factors. Given the limited number of geospatial professionals, analysts using their time effectively is very important. The automation and faster humancomputer interactions of common tasks that will not disrupt their workflow or attention is something that is very desirable. The following research describes a novel approach to increase productivity with a wireless, wearable, electroencephalograph (EEG) headset within the geospatial workflow.
Resumo:
OBJECTIVES: To establish an adequate definition of acute disseminated encephalomyelitis (ADEM) in adults, based on our clinical observations of a case-series. METHODS: Over a period of three years 10 adult patients with a para- or postinfectious disseminated (diffuse or multifocal) syndrome of the CNS fulfilling predefined strict criteria for the diagnosis of ADEM were encountered and systematically followed. RESULTS: The age ranged from 21 to 62 years, two were men. MRI was normal in 5 patients and only mildly abnormal in the remaining patients. CSF was normal in 5 patients and mildly abnormal in the remainder, EEG was abnormal in 7/8 patients. All patients survived and were followed over a period of 30 months (range: 8 to 48 months). Nine patients were left with some residual defects, consisting most often of a mild cognitive impairment. CONCLUSIONS: The EEG as an investigation of brain function can be crucial in establishing the organic nature of disease. MRI is important to exclude other diffuse or multifocal encephalopathies. However, in contrast to previous reports in the literature abnormal MRI should not be considered mandatory in adult ADEM. Difficulties in the diagnosis of ADEM are discussed and the importance of clinical and paraclinical findings for establishing the diagnosis is outlined.
Resumo:
The evolution of subjective sleep and sleep electroencephalogram (EEG) after hemispheric stroke have been rarely studied and the relationship of sleep variables to stroke outcome is essentially unknown. We studied 27 patients with first hemispheric ischaemic stroke and no sleep apnoea in the acute (1-8 days), subacute (9-35 days), and chronic phase (5-24 months) after stroke. Clinical assessment included estimated sleep time per 24 h (EST) and Epworth sleepiness score (ESS) before stroke, as well as EST, ESS and clinical outcome after stroke. Sleep EEG data from stroke patients were compared with data from 11 hospitalized controls and published norms. Changes in EST (>2 h, 38% of patients) and ESS (>3 points, 26%) were frequent but correlated poorly with sleep EEG changes. In the chronic phase no significant differences in sleep EEG between controls and patients were found. High sleep efficiency and low wakefulness after sleep onset in the acute phase were associated with a good long-term outcome. These two sleep EEG variables improved significantly from the acute to the subacute and chronic phase. In conclusion, hemispheric strokes can cause insomnia, hypersomnia or changes in sleep needs but only rarely persisting sleep EEG abnormalities. High sleep EEG continuity in the acute phase of stroke heralds a good clinical outcome.
Resumo:
BACKGROUND: Reports on the effects of focal hemispheric damage on sleep EEG are rare and contradictory. PATIENTS AND METHODS: Twenty patients (mean age +/- SD 53 +/- 14 years) with a first acute hemispheric stroke and no sleep apnea were studied. Stroke severity [National Institute of Health Stroke Scale (NIHSS)], volume (diffusion-weighted brain MRI), and short-term outcome (Rankin score) were assessed. Within the first 8 days after stroke onset, 1-3 sleep EEG recordings per patient were performed. Sleep scoring and spectral analysis were based on the central derivation of the healthy hemisphere. Data were compared with those of 10 age-matched and gender-matched hospitalized controls with no brain damage and no sleep apnea. RESULTS: Stroke patients had higher amounts of wakefulness after sleep onset (112 +/- 53 min vs. 60 +/- 38 min, p < 0.05) and a lower sleep efficiency (76 +/- 10% vs. 86 +/- 8%, p < 0.05) than controls. Time spent in slow-wave sleep (SWS) and rapid eye movement (REM) sleep and total sleep time were lower in stroke patients, but differences were not significant. A positive correlation was found between the amount of SWS and stroke volume (r = 0.79). The slow-wave activity (SWA) ratio NREM sleep/wakefulness was lower in patients than in controls (p < 0.05), and correlated with NIHSS (r = -0.47). CONCLUSION: Acute hemispheric stroke is accompanied by alterations of sleep EEG over the healthy hemisphere that correlate with stroke volume and outcome. The increased SWA during wakefulness and SWS over the healthy hemisphere contralaterally to large strokes may reflect neuronal hypometabolism induced transhemispherically (diaschisis).
Resumo:
Ultrasonic acoustic emission (UAE) in trees is often related to collapsing water columns in the flow path as a result of tensions that are too strong (cavitation). However, in a decibel (dB) range below that associated with cavitation, a close relationship was found between UAE intensities and stem radius changes. • UAE was continuously recorded on the stems of mature field-grown trees of Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens) at a dry inner-Alpine site in Switzerland over two seasons. The averaged 20-Hz records were related to microclimatic conditions in air and soil, sap-flow rates and stem-radius fluctuations de-trended for growth (ΔW). • Within a low-dB range (27 ± 1 dB), UAE regularly increased and decreased in a diurnal rhythm in parallel with ΔW on cloudy days and at night. These low-dB emissions were interrupted by UAE abruptly switching between the low-dB range and a high-dB range (36 ± 1 dB) on clear, sunny days, corresponding to the widely supported interpretation of UAE as sound from cavitations. • It is hypothesized that the low-dB signals in drought-stressed trees are caused by respiration and/or cambial growth as these physiological activities are tissue water-content dependent and have been shown to produce courses of CO2 efflux similar to our courses of ΔW and low-dB UAE.
Resumo:
Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.
Resumo:
Phase locking or synchronization of brain areas is a key concept of information processing in the brain. Synchronous oscillations have been observed and investigated extensively in EEG during the past decades. EEG oscillations occur over a wide frequency range. In EEG, a prominent type of oscillations is alpha-band activity, present typically when a subject is awake, but at rest with closed eyes. The spectral power of alpha rhythms has recently been investigated in simultaneous EEG/fMRI recordings, establishing a wide-range cortico-thalamic network. However, spectral power and synchronization are different measures and little is known about the correlations between BOLD effects and EEG synchronization. Interestingly, the fMRI BOLD signal also displays synchronous oscillations across different brain regions. These oscillations delineate so-called resting state networks (RSNs) that resemble the correlation patterns of simultaneous EEG/fMRI recordings. However, the nature of these BOLD oscillations and their relations to EEG activity is still poorly understood. One hypothesis is that the subunits constituting a specific RSN may be coordinated by different EEG rhythms. In this study we report on evidence for this hypothesis. The BOLD correlates of global EEG synchronization (GFS) in the alpha frequency band are located in brain areas involved in specific RSNs, e.g. the 'default mode network'. Furthermore, our results confirm the hypothesis that specific RSNs are organized by long-range synchronization at least in the alpha frequency band. Finally, we could localize specific areas where the GFS BOLD correlates and the associated RSN overlap. Thus, we claim that not only the spectral dynamics of EEG are important, but also their spatio-temporal organization.