896 resultados para Drying shrinkages


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper descirbes a simple test measuring the sorptivity (a measure of the absorption property if concrete) and the air and water permeability of concrete on site. Using this test, the decay of pressure is monitired for the air permeability test.whereas water penetrating into the concrete at a constant pressure of 0.01 bar and 1.5 bar are recorded for the sorptivity and the water permeability tests respectively. These tests are essentially non-destructive in nature and a skilled operator is not needed. It is possible to carry out a number of tests quickly and efficiently on site without prior planning. It has been found that statistically satisfactory results can be obtained from a mean of three tests. As the flow lines are largely concentrated within 40 mm from the surface, reasonably reliable results can be obtained by drying the surface even if the surface under test is initially wet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloride is the most severe form of deterioration experienced by concrete and one of the principal sources of chlorides is sea water. However, the presence of sulfates in seawater will influence the movement of chloride ions and vice versa. This interaction is not well understood and current codes of practice provide no guidelines for such dual exposure.
An investigation to monitor combined effect of the ingress of chlorides and sulfates during a realistic 12 month wetting and drying exposure regime to simulate conditions in which multiple mode transport mechanisms are active was conducted on a variety of binders (PC, PFA and GGBS). Penetration was evaluated using water and acid soluble chloride profiles and sulfate profiles.
It was found that the nature of the exposure provided multiple modes of transport within the concrete, thus creating a complex pattern of distribution of ions. The presence of sulfates decreased the penetration of chlorides in the PC system at all ages relative to a chloride only control. The matrices containing PFA and GGBS also showed an initial decrease in chloride penetration. However, after six months the presence of sulfates then increased chloride penetration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While on site measurement of air permeability provides a useful approach for assessing the likely long term durability of concrete structures, no existing test method is capable of effectively determining the relative permeability of high performance concrete (HPC). Lack of instrument sensitivity and the influence of concrete moisture are proposed as two key reasons for this phenomenon. With limited systematic research carried out in this area to date, the aim if this study was to investigate the influence of instrument sensitivity and moisture condition on air permeability measurements for both normal concrete and HPC. To achieve a range of moisture conditions, samples were dried initially for between one and 5 weeks and then sealed in polythene sheeting and stored in an oven at 50 C to internally distribute moisture evenly. Moisture distribution was determined throughout using relative humidity probe and electrical resistance measurements. Concrete air permeability was subsequently measured using standardised air permeability (Autoclam) and water penetration (BS EN: 12390-8) tests to assess differences between the HPCs tested in this study. It was found that for both normal and high performance concrete, the influence of moisture on Autoclam air permeability results could be eliminated by pre-drying (50 ± 1 C, RH 35%) specimens for 3 weeks. While drying for 5 weeks alone was found not to result in uniform internal moisture distributions, this state was achieved by exposing specimens to a further 3 weeks of sealed pre-conditioning at 50 ± 1 C. While the Autoclam test was not able to accurately identify relative HPC quality due to low sensitivity at associated performance levels, an effective preconditioning procedure to obtain reliable air permeability of HPC concretes was identified. © 2013 The Authors

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mfabeni peatland is the only known sub-tropical coastal fen that transcends the Last Glacial Maximum (LGM). This ca. 10m thick peat sequence provides a continuous sedimentation record spanning from the late Pleistocene to present (basal age c. 47kcalyr BP). We investigated the paleaeoenvironmental controls on peat formation and organic matter source input at the Mfabeni fen by: 1) exploring geochemical records (mass accumulation rate, total organic carbon, carbon accumulation rate, δC, δN and C/N ratio) to delineate primary production, organic matter source input, preservation and diagenetic processes, and 2) employ these geochemical signatures to reconstruct the palaeoenvironmental conditions and prevailing climate that drove carbon accumulation in the peatland. We established that the Mfabeni peat sediments have undergone minimal diagenetic alteration. The peat sequence was divided into 5 linear sedimentation rate (LSR) stages indicating distinct changes in climate and hydrological conditions: LSR stage 1 (c. 47 to c. 32.2kcalyr BP): predominantly cool and wet climate with C4 plant assemblages, interrupted by two short warming events. LSR stage 2 (c. 32.2 to c. 27.6kcalyr BP): dry and windy climate followed by a brief warm and wet period with increased C4 sedge swamp vegetation. LSR stage 3 (c. 27.6 to c. 20.3kcalyr BP): initial cool and wet period with prevailing C4 sedge plant assemblage until c. 23kcalyr BP; then an abrupt change to dry and cool glacial conditions and steady increases in C3 grasses. LSR stage 4 (c. 20.3 to c. 10.4kcalyr BP): continuation of cool and dry conditions and strong C3 grassland signature until c. 15kcalyr BP, after which precipitation increases. LSR stage 5 (c. 10.4kcalyr BP to present): characterised by extreme fluctuations between pervasive wet and warm to cool interglacial conditions with intermittent abrupt millennial-scale cooling/drying events and oscillations between C3 and C4 plant assemblages. In this study we reconstructed a high-resolution record of local hydrology, bulk plant assemblage and inferred climate since the Late Pleistocene, which suggest an anti-phase link between Southern African and the Northern Hemisphere, most notably during Heinrich (5 to 2) and Younger Dryas events. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The water and wastewater industry in the UK accounts for around 3% of total energy use and just over 1% of total UK greenhouse gas emissions. Targets for greenhouse gas emissions reduction and higher renewable energy penetration, coupled with rising energy costs, growing demand for wastewater services and tightening EU water quality requirements, have led to an increased interest in alternative wastewater treatment methods. The use of short rotation coppice (SRC) willow for the treatment of wastewater effluent is one such alternative, which brings with it the dual benefits of wastewater treatment and production of biomass for energy. In order to assess the effectiveness of SRC willow, it is important to analyse the overall energy balance in terms of energy input versus energy output. This paper carries out an energy life cycle analysis of a specific SRC willow plantation in Northern Ireland to which farmyard washings (dirty water) are applied. The system boundaries include the establishment, maintenance, and harvesting of the plantation, along with the transport and drying of the wood for biomass combustion. The analysis shows that the overall energy balance is positive, and that the direct and indirect energy demands are 12% and 8% of gross energy production respectively. The energy demands of the plantation are compared with the energy required to treat an equivalent nutrient load in a conventional wastewater treatment plant. While a conventional plant consumes 2.6 MJ/m3 , the irrigation system consumes 1.6 MJ/m3 and the net energy production of the scenario is 48 MJ/m3 .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permeable reactive barriers (PRBs) of zero-valent iron (Fe0) are increasingly being used to remediate contaminated ground water. Corrosion of Fe0 filings and tbe formation of precipitates can occur when the PRB material comes in contact with ground water and may reduce the lifespan and effectiveness of the barrier. At present, there are no routine procedures for preparing and analyzing the mineral precipitates from Fe0 PRB material. These procedures are needed because mineralogical composition of corrosion products used to interpret the barrier processes can change with iron oxidation and sample preparation. The objectives of this study were (i) to investigate a method of preparing Fe0 reactive barrier material for mineralogical analysis by X-ray diffraction (XRD), and (ii) to identify Fe mineral phases and rates of transformations induced by different mineralogical preparation techniques. Materials from an in situ Fe0 PRB were collected by undisturbed coring and processed for XRD analysis after different times since sampling for three size fractions and by various drying treatments. We found that whole-sample preparation for analysis was necessary because mineral precipitates occurred within the PRB material in different size fractions of the samples. Green rusts quickly disappeared from acetone-dried samples and were not present in air-dried and oven-dried samples Maghemite/magnetite content increased over time and in oven-dried samples, especially after heating to 105°C. We conclude that care must be taken during sample preparation of Fe0 PRB material, especially for detection of green rusts, to ensure accurate identification of minerals present within the barrier system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloride-induced corrosion of steel in reinforced concrete structures is one of the main problems affecting their durability and it has been studied for decades, but most of them have focused on concrete without cracking or not subjected to any structural load. In fact, concrete structures are subjected to various types of loads, which lead to cracking when the tensile stress in concrete exceeds its tensile strength. Cracking could increase transport properties of concrete and accelerate the ingress of harmful substances (Cl -, O2, H2 O, CO2). This could initiate and accelerate different types of deterioration processes in concrete, including corrosion of steel reinforcement. The expansive products generated by the deterioration processes themselves can initiate cracking. The success of concrete patch repairs can also influence microcracking at the interface as well as the patch repair itself. Therefore, monitoring the development of microcracking in reinforced concrete members is extremely useful to assess the defects and deterioration in concrete structures. In this paper, concrete beams made using 4 different mixes were subjected to three levels of sustained lateral loading (0%, 50% and 100% of the load that can induce a crack with width of 0.1mmon the tension surface of beams - F 0.1) and weekly cycles of wetting (1 day)/drying (6 days) with chloride solution. The development of microcracking on the surface of concrete was monitored using the Autoclam Permeability System at every two weeks for 60 weeks. The ultrasonic pulse velocity of the concrete was also measured along the beam by using the indirect method during the test period. The results indicated that the Autoclam Permeability System was able to detect the development of microcracks caused by both sustained loading and chloride induced corrosion of steel in concrete. However, this was not the case with the ultrasonic method used in the work (indirect method applied along the beam); it was sensitive to microcracking caused by sustained loading but not due to corrosion. © 2014 Taylor & Francis Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloride-induced corrosion of steel is one of the most commonly found problems affecting the durability of reinforced concrete structures in both marine environment and where de-icing salt is used in winter. As the significance of micro-cracks on chloride induced corrosion is not well documented, 24 reinforced concrete beams (4 different mixes - one containing Portland cement and another containing 35% ground granulated blastfurnace slag at 0.45 and 0.65 water-binder ratios) were subjected to three levels of sustained lateral loading (0%, 50% and 100% of the load that can induce 0.1 mm wide cracks on the tension surface of beam - F0.1) in this work. The beams were then subjected to weekly cycles of wetting with 10% NaCl solution for 1 day followed by 6 days of drying at 20 (±1) °C up to an exposure period of 60 weeks. The progress of corrosion of steel was monitored using half-cell potential apparatus and linear polarisation resistance (LPR) test. These results have shown that macro-cracks (at load F0.1) and micro-cracks (at 50% of F0.1) greatly accelerated both the initiation and propagation stages of the corrosion of steel in the concrete beams. Lager crack widths for the F0.1 load cases caused higher corrosion rates initially, but after about 38 weeks of exposure, there was a decrease in the rate of corrosion. However, such trends could not be found in 50% F 0.1 group of beams. The extent of chloride ingress also was influenced by the load level. These findings suggest that the effect of micro-cracking at lower loads are very important for deciding the service life of reinforced concrete structures in chloride exposure environments. © 2014 4th International Conference on the Durability of Concrete Structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkali activated slag (AAS) is an alternative cementitious material. Sodium silicate solution is usually used to activate ground granulated blast furnace slag to produce AAS. As a consequence, the pore solution chemistry of AAS differs from that of Portland cement (PC). Although AAS offers many advantages over PC, such as higher strength, superior resistance to acid and sulphate environments and lower embodied carbon due to 100% PC replacement, there is a need to assess its performance against chloride induced corrosion duo to its different pore solution chemistry. For PC systems, resistivity measurement, as a type of nondestructive test, is usually used to evaluate its chloride diffusivity and the corrosion rate of the embedded steel. However, due to the different pore solution chemistry present in the different AAS systems, the application of this test in AAS concretes would be questionable as the resistivity of concrete is highly dependent on its conductivity of the pore solution. Therefore, a study was carried out using twelve AAS concretes mixes, the results of which are reported in this paper. The AAS mixes were designed with alkali concentration of 4%, 6% and 8% (Na2O% of the mass of slag) and modulus (Ms) of sodium silicate solution of 0.75, 1.00, 1.50 and 2.00. A PC concrete with the same binder content as the AAS concretes was also studied as a reference. The chloride diffusion coefficient was determined using a non-steady state chloride diffusion test (NT BUILD 443). The resistivity of the concretes before the diffusion test was also measured. Macrocell corrosion current (corrosion rate) for steel rods embedded in the concretes was measured whilst subjecting the concretes to a cyclic chloride ponding regime (1 day ponded with salt solution and 6 days drying). The results showed that the AAS concretes had lower chloride diffusivity with associated higher resistivity than the PC concrete. The measured corrosion rate was also lower for the AAS concretes. However, unlike the PC, in which a higher resistivity yields a lower diffusivity and corrosion rate, there was no relationship apparent between the resistivity and either the diffusivity or the corrosion rate of steel for the AAS concretes. This is assigned to the variation of the pore solution composition of the AAS concretes. This also means that resistivity measurements cannot be depended on for assessing the chloride induced corrosion resistance of AAS concretes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphism of crystalline drugs is a common phenomenon. However, the number of reported polymorphic cocrystals is very limited. In this work, the synthesis and solid-state characterization of a polymorphic cocrystal composed of sulfadimidine (SD) and 4-aminosalicylic acid (4-ASA) is reported for the first time. By liquid-assisted milling, the SD:4-ASA 1:1 form I cocrystal, the structure of which has been previously reported, was formed. By spray drying, a new polymorphic form (form II) of the SD:4-ASA 1:1 cocrystal was discovered which could also be obtained by solvent evaporation from ethanol and acetone. Structure determination of the form II cocrystal was calculated using high-resolution X-ray powder diffraction. The solubility of the SD:4-ASA 1:1 cocrystal was dependent on the pH and predicted by a model established for a two amphoteric component cocrystal. The form I cocrystal was found to be thermodynamically more stable in aqueous solution than form II, which showed transformation to form I. Dissolution studies revealed that the dissolution rate of SD from both cocrystals was enhanced when compared with a physical equimolar mixture and pure SD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large, thin (50 mu m) dry polymer sheets containing numerous surface-enhanced Raman spectroscopy (SERS) active Ag nanopartide aggregates have been prepared by drying aqueous mixtures of hydroxyethylcelloulose (HEC) and preaggregated Ag colloid in 10 x 10 cm molds. In these dry films, the particle aggregates are protected from the environment during storage and are easy to handle; for example, they can be cut to size with scissors. When in use, the highly swellable HEC polymer allowed the films to rapidly absorb aqueous analyte solutions while simultaneously releasing the Ag nanoparticle aggregates to interact with the analyte and generate large SERS signals. Either the films could be immersed in the analyte solution or 5 mu L droplets were applied to the surface; in the latter method, the local swelling caused the active area to dome upward, but the swollen film remained physically robust and could be handled as required. Importantly, encapsulation and release did not significantly compromise the SERS performance of the colloid; the signals given by the swollen films were similar to the very high signals obtained from the parent citrate-reduced colloid and were an order of magnitude larger than a commercially available nanoparticle substrate. These "Poly-SERS" films retained 70% of their SERS activity after being stored for 1 year in air. The films were sufficiently homogeneous to give a standard deviation of 3.2% in the absolute signal levels obtained from a test analyte, primarily due to the films' ability to suppress "coffee ring" drying marks, which meant that quantitative analysis without an internal standard was possible. The majority of the work used aqueous thiophenol as the test analyte; however, preliminary studies showed that the Poly-SERS films could also be used with nonaqueous solvents and for a range of other analytes including theophylline, a therapeutic drug, at a concentration as low as 1.0 x 10(-5) mol dm(-3) (1.8 mg/dm(3)), well below the sensitivity required for theophylline monitoring where the target range is 10-20 mg/dm(3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gels obtained by complexation of octablock star polyethylene oxide/polypropylene oxide copolymers (Tetronic 90R4) with -cyclodextrin (-CD) were evaluated as matrices for drug release. Both molecules are biocompatible so they can be potentially applied to drug delivery systems. Two different types of matrices of Tetronic 90R4 and -CD were evaluated: gels and tablets. These gels are capable to gelifying in situ and show sustained erosion kinetics in aqueous media. Tablets were prepared by freeze-drying and comprising the gels. Using these two different matrices, the release of two model molecules, L-tryptophan (Trp), and a protein, bovine serum albumin (BSA), was evaluated. The release profiles of these molecules from gels and tablets prove that they are suitable for sustained delivery. Mathematical models were applied to the release curves from tablets to elucidate the drug delivery mechanism. Good correlations were found for the fittings of the release curves to different equations. The results point that the release of Trp from different tablets is always governed by Fickian diffusion, whereas the release of BSA is governed by a combination of diffusion and tablet erosion. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69-91% and 4-27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364±64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slow release drugs must be manufactured to meet target specifications with respect to dissolution curve profiles. In this paper we consider the problem of identifying the drivers of dissolution curve variability of a drug from historical manufacturing data. Several data sources are considered: raw material parameters, coating data, loss on drying and pellet size statistics. The methodology employed is to develop predictive models using LASSO, a powerful machine learning algorithm for regression with high-dimensional datasets. LASSO provides sparse solutions facilitating the identification of the most important causes of variability in the drug fabrication process. The proposed methodology is illustrated using manufacturing data for a slow release drug.