929 resultados para Drugs precursors
Resumo:
Objective To analyse the available evidence on cardiovascular safety of non-steroidal anti-inflammatory drugs. Design Network meta-analysis. Data sources Bibliographic databases, conference proceedings, study registers, the Food and Drug Administration website, reference lists of relevant articles, and reports citing relevant articles through the Science Citation Index (last update July 2009). Manufacturers of celecoxib and lumiracoxib provided additional data. Study selection All large scale randomised controlled trials comparing any non-steroidal anti-inflammatory drug with other non-steroidal anti-inflammatory drugs or placebo. Two investigators independently assessed eligibility. Data extraction The primary outcome was myocardial infarction. Secondary outcomes included stroke, death from cardiovascular disease, and death from any cause. Two investigators independently extracted data. Data synthesis 31 trials in 116 429 patients with more than 115 000 patient years of follow-up were included. Patients were allocated to naproxen, ibuprofen, diclofenac, celecoxib, etoricoxib, rofecoxib, lumiracoxib, or placebo. Compared with placebo, rofecoxib was associated with the highest risk of myocardial infarction (rate ratio 2.12, 95% credibility interval 1.26 to 3.56), followed by lumiracoxib (2.00, 0.71 to 6.21). Ibuprofen was associated with the highest risk of stroke (3.36, 1.00 to 11.6), followed by diclofenac (2.86, 1.09 to 8.36). Etoricoxib (4.07, 1.23 to 15.7) and diclofenac (3.98, 1.48 to 12.7) were associated with the highest risk of cardiovascular death. Conclusions Although uncertainty remains, little evidence exists to suggest that any of the investigated drugs are safe in cardiovascular terms. Naproxen seemed least harmful. Cardiovascular risk needs to be taken into account when prescribing any non-steroidal anti-inflammatory drug.
Resumo:
To assess existing health economic strategies, which are used to evaluate the economic value of drugs to treat alcohol dependence (AD) such as acamprosate, naltrexone and any other pharmaceuticals.
Resumo:
nterleukins (ILs) are cytokines which are defined by their capability to convey information between leukocytes, in this way directing proliferation, activation, and migration and also regulation of the cells. Data from anti-IL treatments in systemic autoimmune diseases have shown these drugs to be beneficial and to have a satisfactory safety profile and tolerance. Recent publications of small case series suggest that several anti-IL drugs have considerable efficacy in treating otherwise refractory uveitis. Anti-IL therapy, therefore, might constitute an option for the treatment of uveitis resistant to corticosteroids, classical immunosuppressives, or tumor necrosis factor-α inhibitors. However, due to high costs and possible long-term risks, anti-IL agents should currently be reserved to selected uveitis patients and be administered only under close interdisciplinary monitorin
Resumo:
For centuries the science of pharmacognosy has dominated rational drug development until it was gradually substituted by target-based drug discovery in the last fifty years. Pharmacognosy stems from the different systems of traditional herbal medicine and its "reverse pharmacology" approach has led to the discovery of numerous pharmacologically active molecules and drug leads for humankind. But do botanical drugs also provide effective mixtures? Nature has evolved distinct strategies to modulate biological processes, either by selectively targeting biological macromolecules or by creating molecular promiscuity or polypharmacology (one molecule binds to different targets). Widely claimed to be superior over monosubstances, mixtures of bioactive compounds in botanical drugs allegedly exert synergistic therapeutic effects. Despite evolutionary clues to molecular synergism in nature, sound experimental data are still widely lacking to support this assumption. In this short review, the emerging concept of network pharmacology is highlighted, and the importance of studying ligand-target networks for botanical drugs is emphasized. Furthermore, problems associated with studying mixtures of molecules with distinctly different pharmacodynamic properties are addressed. It is concluded that a better understanding of the polypharmacology and potential network pharmacology of botanical drugs is fundamental in the ongoing rationalization of phytotherapy.
Resumo:
Quassinoids are a group of compounds extracted from plants of the Simaroubaceae family, which have been used for many years in folk medicine. These molecules gained notoriety after the initial discovery of the anti-leukemic activity of one member, bruceantin, in 1975. Currently over 150 quassinoids have been isolated and classified based on their chemical structures and biological properties investigated in vitro and in vivo. Many molecules display a wide range of inhibitory effects, including anti-inflammatory, anti-viral, anti-malarial and anti-proliferative effects on various tumor cell types. Although often the exact mechanism of action of the single agents remains unclear, some agents have been shown to affect protein synthesis in general, or specifically HIF-1α and MYC, membrane polarization and the apoptotic machinery. Considering that future research into chemical modifications is likely to generate more active and less toxic derivatives of natural quassinoids, this family represents a powerful source of promising small molecules targeting key prosurvival signaling pathways relevant for diverse pathologies. Here, we review available knowledge of functionality and possible applications of quassinoids and quassinoid derivatives, spanning traditional use to the potential impact on modern medicine as cancer therapeutics.
Resumo:
During the past two decades, chiral capillary electrophoresis (CE) emerged as a promising, effective and economic approach for the enantioselective determination of drugs and their metabolites in body fluids, tissues and in vitro preparations. This review discusses the principles and important aspects of CE-based chiral bioassays, provides a survey of the assays developed during the past 10 years and presents an overview of the key achievements encountered in that time period. Applications discussed encompass the pharmacokinetics of drug enantiomers in vivo and in vitro, the elucidation of the stereoselectivity of drug metabolism in vivo and in vitro, and bioanalysis of drug enantiomers of toxicological, forensic and doping interest. Chiral CE was extensively employed for research purposes to investigate the stereoselectivity associated with hydroxylation, dealkylation, carboxylation, sulfoxidation, N-oxidation and ketoreduction of drugs and metabolites. Enantioselective CE played a pivotal role in many biomedical studies, thereby providing new insights into the stereoselective metabolism of drugs in different species which might eventually lead to new strategies for optimization of pharmacotherapy in clinical practice.
Resumo:
Hypertension is a powerful treatable risk factor for stroke. Reports of randomized controlled trials (RCTs) of antihypertensive drugs rightly concentrate on clinical outcomes, but control of blood pressure (BP) during follow-up is also important, particularly given that inconsistent control is associated with a high risk of stroke and that antihypertensive drug classes differ in this regard.
Resumo:
Thrombotic microangiopathy (TMA) has multiple etiologies. In the four disorders described in this review, the primary organ involved is the kidney. Drug-associated TMA can be an acute, immune-mediated disorder or the result of gradual, dose-dependent toxicity. TMA may occur in patients with advanced HIV infection, possibly mediated by angio-invasive infections. TMA following allogeneic hematopoietic stem cell transplantation may also be caused by drug toxicity; the pathogenesis may involve inhibition of vascular endothelial cell growth factor in renal podocytes. Malignancies of many types with systemic microvascular involvement may cause TMA. Recognition that these syndromes may mimic TTP is important to provide appropriate management and to avoid the inappropriate use of plasma exchange treatment.
Identification of a host cell target for the thiazolide class of broad-spectrum anti-parasitic drugs
Resumo:
The thiazolide nitazoxanide (NTZ) and some derivatives exhibit considerable in vitro activities against a broad range of parasites, including the apicomplexans Neospora caninum and Toxoplasma gondii tachyzoites. In order to identify potential molecular targets for this compound in both parasites, RM4847 was coupled to epoxy-agarose and affinity chromatography was performed. A protein of approximately 35 kDa was eluted upon RM4847-affinity-chromatography from extracts of N. caninum-infected human foreskin fibroblasts (HFF) and non-infected HFF, but no protein was eluted when affinity chromatography was performed with T. gondii or N. caninum tachyzoite extracts. Mass spectrometry analysis identified the 35 kDa protein as human quinone reductase NQO1 (P15559; QR). Within 8h after infection of HFF with N. caninum tachyzoites, QR transcript expression levels were notably increased, but no such increase was observed upon infection with T. gondii tachyzoites. Treatment of non-infected HFF with RM4847 did also lead to an increase of QR transcript levels. The enzymatic activity of 6-histidine-tagged recombinant QR (recQR) was assayed using menadione as a substrate. The thiazolides NTZ, tizoxanide and RM4847 inhibited recQR activity on menadione in a concentration-dependent manner. Moreover, a small residual reducing activity was observed when these thiazolides were offered as substrates.
Resumo:
OBJECTIVES: The protozoan parasite Giardia lamblia causes the intestinal disease giardiasis, which may lead to acute and chronic diarrhoea in humans and various animal species. For treatment of this disease, several drugs such as the benzimidazole albendazole, the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are currently in use. Previously, a G. lamblia nitroreductase 1 (GlNR1) was identified as a nitazoxanide-binding protein. The aim of the present project was to elucidate the role of this enzyme in the mode of action of the nitro drugs nitazoxanide and metronidazole. METHODS: Recombinant GlNR1 was overexpressed in both G. lamblia and Escherichia coli (strain BL21). The susceptibility of the transfected bacterial and giardial cell lines to nitazoxanide and metronidazole was analysed. RESULTS: G. lamblia trophozoites overexpressing GlNR1 had a higher susceptibility to both nitro drugs. E. coli were fully resistant to nitazoxanide under both aerobic and semi-aerobic growth conditions. When grown semi-aerobically, bacteria overexpressing GlNR1 became susceptible to nitazoxanide. CONCLUSIONS: These findings suggest that GlNR1 activates nitro drugs via reduction yielding a cytotoxic product.