983 resultados para Doubly Warped Product


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes the results of an investigation into the modelling of plug assisted thermoforming. The objective of this work was to improve the finite element modelling of thermoforming through an enhanced understanding of the physical elements underlying the process. Experiments were carried out to measure the effects on output of changes in major parameters and simultaneously simple finite element models were constructed. The experimental results show that the process creates conflicting and interrelated contact friction and heat transfer effects that largely dictate the final wall thickness distribution. From the simulation work it was demonstrated that a high coefficient of friction and no heat transfer can give a good approximation of the actual wall thickness distribution. However, when conduction was added to the model the results for lower friction values were greatly improved. It was concluded that further work is necessary to provide realistic measurements and models for contact effects in thermoforming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured ejected electron spectra caused by autoionization of doubly excited states in He atoms; the excited He was made by double electron capture of low-energy He2+ ions colliding with Ba atoms. Measurements were performed by means of zero degree electron spectroscopy at projectile energies from 40 to 20 keV. Electron spectra due to autoionization from the states He(2lnl') to He+(1s) for n greater than or equal to2, and those from He(3lnl') to He+ (2s or 2p) for n greater than or equal to3, were observed. Line peaks in the spectra were identified by comparing observed electron spectra with those of several theoretical calculations. It was found that doubly excited states of relatively high angular momenta such as the D and F terms were conspicuously created in a quite different manner from the cases of the production of doubly excited states by the use of photon, electron, or ion impacts on neutral He atoms. Rydberg states with large n values were observed with high population in both the He(2lnl') and He(3lnl') series. Other remarkable features in the electron spectra are described and the mechanisms for the production of these electron spectra are discussed qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous peptidomic analyses of the defensive skin secretion from the North American pickerel frog, Rana palustris, have established the presence of canonical bradykinin and multiple bradykinin-related peptides (BRPs). As a consequence of the multiplicity of peptides identified and their diverse primary structures, it was speculated that they must represent the products of expression of multiple genes. Here, we present unequivocal evidence that the majority of BRPs (11/13) identified in skin secretion by the peptidomic approach can be generated by differential site-specific protease cleavage from a single common precursor of 321 amino acid residues, named skin kininogen 1, whose primary structure was deduced from cloned skin secretion-derived cDNA. The organization of skin kininogen 1 consists of a hydrophobic signal peptide followed by eight non-identical domains each encoding a single copy of either canonical bradykinin or a BRP. Two additional splice variants, encoding precursors of 233 (skin kininogen 2) or 189 amino acid residues (skin kininogen 3), were also cloned and were found to lack BRP-encoding domains 5 and 6 or 4, 5 and 6, respectively. Thus, generation of peptidome diversity in amphibian defensive skin secretions can be achieved in part by differential protease cleavage of relatively large and multiple-encoding domain precursors reflecting a high degree of transcriptional economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present calculations of the time delay between single and double ionization of helium, obtained from full-dimensionality numerical integrations of the helium-laser Schroedinger equation. The notion of a quantum mechanical time delay is defined in terms of the interval between correlated bursts of single and double ionization. Calculations are performed at 390 and 780 nm in laser intensities that range from 2 X 10^14 to 14 X 10^14 W /cm^2. We find results consistent with the rescattering model of double ionization but supporting its classical interpretation only at 780 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The laser-induced photodissociation of formaldehyde in the wavelength range 309<λ<330nm 309<λ<330nm has been investigated using H (Rydberg) atom photofragment translational spectroscopy. Photolysis wavelengths corresponding to specific rovibronic transitions in the A ˜ A 2 1 ←X ˜ A 1 1 ÃA21←X̃A11 2 1 0 4 3 0 201403 , 2 2 0 4 1 0 202401 , 2 2 0 4 3 0 202403 , 2 3 0 4 1 0 203401 , and 2 1 0 5 1 0 201501 bands of H 2 CO H2CO were studied. The total kinetic energy release spectra so derived can be used to determine partial rotational state population distributions of the HCO cofragment. HCO product state distributions have been derived following the population of various different N K a NKa levels in the A ˜ A 2 1 ÃA21 2 2 4 3 2243 and 2 3 4 1 2341 states. Two distinct spectral signatures are identified, suggesting competition between dissociation pathways involving the X ˜ A 1 1 X̃A11 and the a ˜ A 2 3 ãA23 potential energy surfaces. Most rovibrational states of H 2 CO(A ˜ A 2 1 ) H2CO(ÃA21) investigated in this work produceH+HCO(X ˜ A ′ 2 ) H+HCO(X̃A′2) photofragments with a broad kinetic energy distribution and significant population in high energy rotational states of HCO. Photodissociation via the A ˜ A 2 1 ÃA21 2 2 4 3 2243 1 1,1 11,1 (and 1 1,0 11,0 ) rovibronic states yields predominantly HCO fragments with low internal energy, a signature that these rovibronic levels are perturbed by the a ˜ A 2 3 ãA23 state. The results also suggest the need for further careful measurements of the H+HCO H+HCO quantum yield from H 2 CO H2CO photolysis at energies approaching, and above, the barrier to C–H bond fission on the a ˜ A 2 3 ãA23 potential energy surface.