938 resultados para Domain Specific Architecture
Resumo:
A recent initiative of the European Space Agency (ESA) aims at the definition and adoption of a software reference architecture for use in on-board software of future space missions. Our PhD project placed in the context of that effort. At the outset of our work we gathered all the industrial needs relevant to ESA and all the main European space stakeholders and we were able to consolidate a set of technical high-level requirements for the fulfillment of them. The conclusion we reached from that phase confirmed that the adoption of a software reference architecture was indeed the best solution for the fulfillment of the high-level requirements. The software reference architecture we set on building rests on four constituents: (i) a component model, to design the software as a composition of individually verifiable and reusable software units; (ii) a computational model, to ensure that the architectural description of the software is statically analyzable; (iii) a programming model, to ensure that the implementation of the design entities conforms with the semantics, the assumptions and the constraints of the computational model; (iv) a conforming execution platform, to actively preserve at run time the properties asserted by static analysis. The nature, feasibility and fitness of constituents (ii), (iii) and (iv), were already proved by the author in an international project that preceded the commencement of the PhD work. The core of the PhD project was therefore centered on the design and prototype implementation of constituent (i), a component model. Our proposed component model is centered on: (i) rigorous separation of concerns, achieved with the support for design views and by careful allocation of concerns to the dedicated software entities; (ii) the support for specification and model-based analysis of extra-functional properties; (iii) the inclusion space-specific concerns.
Resumo:
In the last decade, the reverse vaccinology approach shifted the paradigm of vaccine discovery from conventional culture-based methods to high-throughput genome-based approaches for the development of recombinant protein-based vaccines against pathogenic bacteria. Besides reaching its main goal of identifying new vaccine candidates, this new procedure produced also a huge amount of molecular knowledge related to them. In the present work, we explored this knowledge in a species-independent way and we performed a systematic in silico molecular analysis of more than 100 protective antigens, looking at their sequence similarity, domain composition and protein architecture in order to identify possible common molecular features. This meta-analysis revealed that, beside a low sequence similarity, most of the known bacterial protective antigens shared structural/functional Pfam domains as well as specific protein architectures. Based on this, we formulated the hypothesis that the occurrence of these molecular signatures can be predictive of possible protective properties of other proteins in different bacterial species. We tested this hypothesis in Streptococcus agalactiae and identified four new protective antigens. Moreover, in order to provide a second proof of the concept for our approach, we used Staphyloccus aureus as a second pathogen and identified five new protective antigens. This new knowledge-driven selection process, named MetaVaccinology, represents the first in silico vaccine discovery tool based on conserved and predictive molecular and structural features of bacterial protective antigens and not dependent upon the prediction of their sub-cellular localization.
Resumo:
The use of stone and its types of processing have been very important in the vernacular architecture of the cross-border Carso. In Carso this represents an important legacy of centuries and has a uniform typological characteristic to a great extent. The stone was the main constituent of the local architecture, setting and shaping the human environment, incorporating the history of places through their specific symbolic and constructive language. The primary aim of this research is the recognition of the constructive rules and the values embedded in the Carso rural architecture by use and processing of stone. Central to this investigation is the typological reading, aimed to analyze the constructive language expressed by this legacy, through the analysis of the relationship between type, technique and material.
Resumo:
The goal of this thesis is the application of an opto-electronic numerical simulation to heterojunction silicon solar cells featuring an all back contact architecture (Interdigitated Back Contact Hetero-Junction IBC-HJ). The studied structure exhibits both metal contacts, emitter and base, at the back surface of the cell with the objective to reduce the optical losses due to the shadowing by front contact of conventional photovoltaic devices. Overall, IBC-HJ are promising low-cost alternatives to monocrystalline wafer-based solar cells featuring front and back contact schemes, in fact, for IBC-HJ the high concentration doping diffusions are replaced by low-temperature deposition processes of thin amorphous silicon layers. Furthermore, another advantage of IBC solar cells with reference to conventional architectures is the possibility to enable a low-cost assembling of photovoltaic modules, being all contacts on the same side. A preliminary extensive literature survey has been helpful to highlight the specific critical aspects of IBC-HJ solar cells as well as the state-of-the-art of their modeling, processing and performance of practical devices. In order to perform the analysis of IBC-HJ devices, a two-dimensional (2-D) numerical simulation flow has been set up. A commercial device simulator based on finite-difference method to solve numerically the whole set of equations governing the electrical transport in semiconductor materials (Sentuarus Device by Synopsys) has been adopted. The first activity carried out during this work has been the definition of a 2-D geometry corresponding to the simulation domain and the specification of the electrical and optical properties of materials. In order to calculate the main figures of merit of the investigated solar cells, the spatially resolved photon absorption rate map has been calculated by means of an optical simulator. Optical simulations have been performed by using two different methods depending upon the geometrical features of the front interface of the solar cell: the transfer matrix method (TMM) and the raytracing (RT). The first method allows to model light prop-agation by plane waves within one-dimensional spatial domains under the assumption of devices exhibiting stacks of parallel layers with planar interfaces. In addition, TMM is suitable for the simulation of thin multi-layer anti reflection coating layers for the reduction of the amount of reflected light at the front interface. Raytracing is required for three-dimensional optical simulations of upright pyramidal textured surfaces which are widely adopted to significantly reduce the reflection at the front surface. The optical generation profiles are interpolated onto the electrical grid adopted by the device simulator which solves the carriers transport equations coupled with Poisson and continuity equations in a self-consistent way. The main figures of merit are calculated by means of a postprocessing of the output data from device simulation. After the validation of the simulation methodology by means of comparison of the simulation result with literature data, the ultimate efficiency of the IBC-HJ architecture has been calculated. By accounting for all optical losses, IBC-HJ solar cells result in a theoretical maximum efficiency above 23.5% (without texturing at front interface) higher than that of both standard homojunction crystalline silicon (Homogeneous Emitter HE) and front contact heterojuction (Heterojunction with Intrinsic Thin layer HIT) solar cells. However it is clear that the criticalities of this structure are mainly due to the defects density and to the poor carriers transport mobility in the amorphous silicon layers. Lastly, the influence of the most critical geometrical and physical parameters on the main figures of merit have been investigated by applying the numerical simulation tool set-up during the first part of the present thesis. Simulations have highlighted that carrier mobility and defects level in amorphous silicon may lead to a potentially significant reduction of the conversion efficiency.
Resumo:
The radio communication system is one of the most critical system of the overall satellite platform: it often represents the only way of communication, between a spacecraft and the Ground Segment or among a constellation of satellites. This thesis focuses on specific innovative architectures for on-board and on-ground radio systems. In particular, this work is an integral part of a space program started in 2004 at the University of Bologna, Forlì campus, which led to the completion of the microsatellite ALMASat-1, successfully launched on-board the VEGA maiden flight. The success of this program led to the development of a second microsatellite, named ALMASat-EO, a three-axis stabilized microsatellite able to capture images of the Earth surface. Therefore, the first objective of this study was focused on the investigation of an innovative, efficient and low cost architecture for on-board radio communication systems. The TT&C system and the high data rate transmitter for images downlink design and realization are thoroughly described in this work, together with the development of the embedded hardware and the adopted antenna systems. Moreover, considering the increasing interest in the development of constellations of microsatellite, in particular those flying in close formations, a careful analysis has been carried out for the development of innovative communication protocols for inter-satellite links. Furthermore, in order to investigate the system aspects of space communications, a study has been carried out at ESOC having as objective the design, implementation and test of two experimental devices for the enhancement of the ESA GS. Thus, a significant portion of this thesis is dedicated to the description of the results of a method for improving the phase stability of GS radio frequency equipments by means of real-time phase compensation and a new way to perform two antennas arraying tracking using already existing ESA tracking stations facilities.
Resumo:
Within this thesis, new approaches for the concepts of peptide-polymer conjugates and peptide-based hybrid nanomaterials are investigated. In the first part, the synthesis of a triblock polymer-peptide-polymer is carried out following a typical peptide coupling reaction, both in solution and on solid-phase. The peptide sequence is chosen, so that it is cleaved by an enzyme preparation of trypsin. End-functionalized polystyrene is used as a model hydrophobic polymer and coupled to the peptide sequence. The results show successful coupling reactions in both methods, while the solid phase method produced a more defined product. Suspensions, consisting of peptide-polymer conjugates particles, are prepared in water by ultrasonication. In contact with the enzyme, the peptide constituting the conjugated particles is cleaved. This demonstrates the enzymatic cleavage in heterophase of enzymatic sequence bond to hydrophobic polymers, and is of great interest for the encapsulation and delivery of hydrophobic molecules.rnA second approach is the preparation of peptide-based hybrid nanocapsules. This is achieved by interfacial polyaddition in inverse miniemulsion with the peptide sequence functionalized with additional amino acids. A method suitable to the use of a peptide sequence for interfacial polyaddition was developed. It is shown that, the polarity of the dispersed phase influences the structures prepared, from particle-like to polymeric shell with a liquid core.rnThe peptide sequence is equipped with a FRET pair (more exactly, an internally-quenched fluorescent system) which allows the real-time monitoring of the enzymatic cleavage of the recognition site. This system shows the successful cleavage of the peptide-based nanocapsules when trypsin preparation is added to the suspensions. A water-soluble fluorescent polymer is efficiently entrapped and its possible use as marker for the capsules is highlighted. Furthermore, a small water-soluble fluorescent dye (SR-101) is successfully encapsulated and the encapsulation efficiency as a function of the functionality of the peptide and the amount of comonomer equivalent (toluene diisocyanate) is studied. The dye is encapsulated at such a high concentration, that self-quenching occurs. Thus, the release of the encapsulated dye triggered by the enzymatic cleavage of the peptide results in a fluorescence recovery of the dye. The fluorescence recovery of the FRET pair in the peptide and of the encapsulated dye correlate well.rnFinally, nanocapsules based on a hepsin-cleavable peptide sequence are prepared. Hepsin is an enzyme, which is highly upregulated in prostate cancer cells. The cleavage of the nanocapsules is investigated with healthy and “cancerous” (hepsin-expressing) cell cultures. The degradation, followed via fluorescence recovery of the FRET system, is faster for the suspensions introduced in the hepsin expressing cell cultures.rnIn summary, this work tackles the domain of responsive nanomaterials for drug delivery from a new perspective. It presents the adaptation of the miniemulsion process for hybrid peptide-based materials, and their successful use in preparing specific enzyme-responsive nanoparticles, with hydrophilic payload release properties.rn
Resumo:
With this work I elucidated new and unexpected mechanisms of two strong and highly specific transcription inhibitors: Triptolide and Campthotecin. Triptolide (TPL) is a diterpene epoxide derived from the Chinese plant Trypterigium Wilfoordii Hook F. TPL inhibits the ATPase activity of XPB, a subunit of the general transcription factor TFIIH. In this thesis I found that degradation of Rbp1 (the largest subunit of RNA Polymerase II) caused by TPL treatments, is preceded by an hyperphosphorylation event at serine 5 of the carboxy-terminal domain (CTD) of Rbp1. This event is concomitant with a block of RNA Polymerase II at promoters of active genes. The enzyme responsible for Ser5 hyperphosphorylation event is CDK7. Notably, CDK7 downregulation rescued both Ser5 hyperphosphorylation and Rbp1 degradation triggered by TPL. Camptothecin (CPT), derived from the plant Camptotheca acuminata, specifically inhibits topoisomerase 1 (Top1). We first found that CPT induced antisense transcription at divergent CpG islands promoter. Interestingly, by immunofluorescence experiments, CPT was found to induce a burst of R loop structures (DNA/RNA hybrids) at nucleoli and mitochondria. We then decided to investigate the role of Top1 in R loop homeostasis through a short interfering RNA approach (RNAi). Using DNA/RNA immunoprecipitation techniques coupled to NGS I found that Top1 depletion induces an increase of R loops at a genome-wide level. We found that such increase occurs on the entire gene body. At a subset of loci R loops resulted particularly stressed after Top1 depletion: some of these genes showed the formation of new R loops structures, whereas other loci showed a reduction of R loops. Interestingly we found that new peaks usually appear at tandem or divergent genes in the entire gene body, while losses of R loop peaks seems to be a feature specific of 3’ end regions of convergent genes.
Resumo:
The need to effectively manage the documentation covering the entire production process, from the concept phase right through to market realise, constitutes a key issue in the creation of a successful and highly competitive product. For almost forty years the most commonly used strategies to achieve this have followed Product Lifecycle Management (PLM) guidelines. Translated into information management systems at the end of the '90s, this methodology is now widely used by companies operating all over the world in many different sectors. PLM systems and editor programs are the two principal types of software applications used by companies for their process aotomation. Editor programs allow to store in documents the information related to the production chain, while the PLM system stores and shares this information so that it can be used within the company and made it available to partners. Different software tools, which capture and store documents and information automatically in the PLM system, have been developed in recent years. One of them is the ''DirectPLM'' application, which has been developed by the Italian company ''Focus PLM''. It is designed to ensure interoperability between many editors and the Aras Innovator PLM system. In this dissertation we present ''DirectPLM2'', a new version of the previous software application DirectPLM. It has been designed and developed as prototype during the internship by Focus PLM. Its new implementation separates the abstract logic of business from the real commands implementation, previously strongly dependent on Aras Innovator. Thanks to its new design, Focus PLM can easily develop different versions of DirectPLM2, each one devised for a specific PLM system. In fact, the company can focus the development effort only on a specific set of software components which provides specialized functions interacting with that particular PLM system. This allows shorter Time-To-Market and gives the company a significant competitive advantage.
Resumo:
Magnetic Resonance Spectroscopy (MRS) is an advanced clinical and research application which guarantees a specific biochemical and metabolic characterization of tissues by the detection and quantification of key metabolites for diagnosis and disease staging. The "Associazione Italiana di Fisica Medica (AIFM)" has promoted the activity of the "Interconfronto di spettroscopia in RM" working group. The purpose of the study is to compare and analyze results obtained by perfoming MRS on scanners of different manufacturing in order to compile a robust protocol for spectroscopic examinations in clinical routines. This thesis takes part into this project by using the GE Signa HDxt 1.5 T at the Pavillion no. 11 of the S.Orsola-Malpighi hospital in Bologna. The spectral analyses have been performed with the jMRUI package, which includes a wide range of preprocessing and quantification algorithms for signal analysis in the time domain. After the quality assurance on the scanner with standard and innovative methods, both spectra with and without suppression of the water peak have been acquired on the GE test phantom. The comparison of the ratios of the metabolite amplitudes over Creatine computed by the workstation software, which works on the frequencies, and jMRUI shows good agreement, suggesting that quantifications in both domains may lead to consistent results. The characterization of an in-house phantom provided by the working group has achieved its goal of assessing the solution content and the metabolite concentrations with good accuracy. The goodness of the experimental procedure and data analysis has been demonstrated by the correct estimation of the T2 of water, the observed biexponential relaxation curve of Creatine and the correct TE value at which the modulation by J coupling causes the Lactate doublet to be inverted in the spectrum. The work of this thesis has demonstrated that it is possible to perform measurements and establish protocols for data analysis, based on the physical principles of NMR, which are able to provide robust values for the spectral parameters of clinical use.
Resumo:
Summary Antibody-based cancer therapies have been successfully introduced into the clinic and have emerged as the most promising therapeutics in oncology. The limiting factor regarding the development of therapeutical antibody vaccines is the identification of tumor-associated antigens. PLAC1, the placenta-specific protein 1, was categorized for the first time by the group of Prof. Sahin as such a tumor-specific antigen. Within this work PLAC1 was characterized using a variety of biochemical methods. The protein expression profile, the cellular localization, the conformational state and especially the interacting partners of PLAC1 and its functionality in cancer were analyzed. Analysis of the protein expression profile of PLAC1 in normal human tissue confirms the published RT-PCR data. Except for placenta no PLAC1 expression was detectable in any other normal human tissue. Beyond, an increased PLAC1 expression was detected in several cancer cell lines derived of trophoblastic, breast and pancreatic lineage emphasizing its properties as tumor-specific antigen. rnThe cellular localization of PLAC1 revealed that PLAC1 contains a functional signal peptide which conducts the propeptide to the endoplasmic reticulum (ER) and results in the secretion of PLAC1 by the secretory pathway. Although PLAC1 did not exhibit a distinct transmembrane domain, no unbound protein was detectable in the cell culture supernatant of overexpressing cells. But by selective isolation of different cellular compartments PLAC1 was clearly enriched within the membrane fraction. Using size exclusion chromatography PLAC1 was characterized as a highly aggregating protein that forms a network of high molecular multimers, consisting of a mixture of non-covalent as well as covalent interactions. Those interactions were formed by PLAC1 with itself and probably other cellular components and proteins. Consequently, PLAC1 localize outside the cell, where it is associated to the membrane forming a stable extracellular coat-like structure.rnThe first mechanistic hint how PLAC1 promote cancer cell proliferation was achieved identifying the fibroblast growth factor FGF7 as a specific interacting partner of PLAC1. Moreover, it was clearly shown that PLAC1 as well as FGF7 bind to heparin, a glycosaminoglycan of the ECM that is also involved in FGF-signaling. The participation of PLAC1 within this pathway was approved after co-localizing PLAC1, FGF7 and the FGF7 specific receptor (FGFR2IIIb) and identifying the formation of a trimeric complex (PLAC1, FGF7 and the specific receptor FGFR2IIIb). Especially this trimeric complex revealed the role of PLAC1. Binding of PLAC1 together with FGF7 leads to the activation of the intracellular tyrosine kinase of the FGFR2IIIb-receptor and mediate the direct phosphorylation of the AKT-kinase. In the absence of PLAC1, no FGF7 mediated phosphorylation of AKT was observed. Consequently the function of PLAC1 was clarified: PLAC1 acts as a co-factor by stimulating proliferation by of the FGF7-FGFR2 signaling pathway.rnAll together, these novel biochemical findings underline that the placenta specific protein PLAC1 could be a new target for cancer immunotherapy, especially considering its potential applicability for antibody therapy in tumor patients.
Resumo:
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprinbeta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprinbeta. In chicken tenascin-C, meprinbeta processed all three major splicing variants by removal of 10kDa N-terminal and 38kDa C-terminal peptides, leaving a large central part of subunits intact. A similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15kDa) and two C-terminal fragments (40 and 55kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprinbeta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprinbeta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprinbeta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprinbeta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprinbeta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity.
Resumo:
To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required.
Resumo:
Surface platforms were engineered from poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-g-PMOXA) copolymers to study the mechanisms involved in the non-specific adhesion of Escherichia coli (E. coli) bacteria. Copolymers with three different grafting densities (PMOXA chains/Lysine residue of 0.09, 0.33 and 0.56) were synthesized and assembled on niobia (Nb O ) surfaces. PLL-modified and bare niobia surfaces served as controls. To evaluate the impact of fimbriae expression on the bacterial adhesion, the surfaces were exposed to genetically engineered E. coli strains either lacking, or constitutively expressing type 1 fimbriae. The bacterial adhesion was strongly influenced by the presence of bacterial fimbriae. Non-fimbriated bacteria behaved like hard, charged particles whose adhesion was dependent on surface charge and ionic strength of the media. In contrast, bacteria expressing type 1 fimbriae adhered to the substrates independent of surface charge and ionic strength, and adhesion was mediated by non-specific van der Waals and hydrophobic interactions of the proteins at the fimbrial tip. Adsorbed polymer mass, average surface density of the PMOXA chains, and thickness of the copolymer films were quantified by optical waveguide lightmode spectroscopy (OWLS) and variable-angle spectroscopic ellipsometry (VASE), whereas the lateral homogeneity was probed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Streaming current measurements provided information on the charge formation of the polymer-coated and the bare niobia surfaces. The adhesion of both bacterial strains could be efficiently inhibited by the copolymer film only with a grafting density of 0.33 characterized by the highest PMOXA chain surface density and a surface potential close to zero.
Resumo:
In skeletal muscles, the expression of neuronal NO synthase (nNOS) isoforms is uncharacterized at the protein level. We therefore conducted epitope mapping with anti-peptide-antibodies. Antibodies specific for the nNOS N-terminus recognized the 160-kDa alpha-isoform. In contrast, antibodies against the middle portion or the C-terminus of nNOS bound additionally to the truncated 140-kDa beta-isoform which lacks the PDZ-domain present in the alpha-isoform. All nNOS immunohistochemical reactivity was confined to the sarcolemma. Consistently, immunoblotting disclosed both nNOS-isoforms to be co-enriched in the membrane-associated fractions. The beta-isoform was co-immunoprecipitated with alpha-isoform antibodies in muscle extracts indicating an association of both nNOS-isoforms to direct the beta-variant to the sarcolemma.
Resumo:
We report the case of a woman with syncope and persistently prolonged QTc interval. Screening of congenital long QT syndrome (LQTS) genes revealed that she was a heterozygous carrier of a novel KCNH2 mutation, c.G238C. Electrophysiological and biochemical characterizations unveiled the pathogenicity of this new mutation, displaying a 2-fold reduction in protein expression and current density due to a maturation/trafficking-deficient mechanism. The patient's phenotype can be fully explained by this observation. This study illustrates the importance of performing genetic analyses and mutation characterization when there is a suspicion of congenital LQTS. Identifying mutations in the PAS domain or other domains of the hERG1 channel and understanding their effect may provide more focused and mutation-specific risk assessment in this population.