755 resultados para Diuretics, Osmotic
Resumo:
Sodium glucose co-transporter-2 (SGLT2) inhibitors offer a novel approach to treat diabetes by reducing hyperglycaemia via increased glucosuria. This approach reduces renal glucose reabsorption in the proximal renal tubules providing an insulin-independent mechanism to lower blood glucose. The glucuretics are advanced in clinical development and dapagliflozin has received most extensive study. Once daily dapaglifolozin as monotherapy or as add-on to metformin for 12-24 weeks in type 2 diabetic patients (baseline HbA 8-9%) reduced HbA by about 0.5-1%, accompanied by weight loss (2-3 kg) and without significant risk of hypoglycaemia. Dapagliflozin has reduced insulin requirement and improved glycaemic control without weight gain in insulin-treated patients. A mild osmotic diuresis associated with glucuretic therapy may account for a small increase in haematocrit (1-2%) and reduced blood pressure (2-5 mmHg). Dehydration and altered electrolyte balance have not been encountered. Urinary tract and genital infections increased in most studies with dapagliflozin, but were typically mild - resolving with selfmedication or standard intervention. Thus glucuretics provide a novel insulin-independent approach for control of hyperglycaemia which does not incur hypoglycaemia, promotes weight loss, may reduce blood pressure and offers compatibility with other glucose-lowering agents. © 2010 The Author(s).
Resumo:
The load-bearing biomechanical role of the intervertebral disc is governed by the composition and organization of its major macromolecular components, collagen and aggrecan. The major function of aggrecan is to maintain tissue hydration, and hence disc height, under the high loads imposed by muscle activity and body weight. Key to this role is the high negative fixed charge of its glycosaminoglycan side chains, which impart a high osmotic pressure to the tissue, thus regulating and maintaining tissue hydration and hence disc height under load. In degenerate discs, aggrecan degrades and is lost from the disc, particularly centrally from the nucleus pulposus. This loss of fixed charge results in reduced hydration and loss of disc height; such changes are closely associated with low back pain. The present authors developed biomimetic glycosaminoglycan analogues based on sulphonate-containing polymers. These biomimetics are deliverable via injection into the disc where they polymerize in situ, forming a non-degradable, nuclear "implant" aimed at restoring disc height to degenerate discs, thereby relieving back pain. In vitro, these glycosaminoglycan analogues possess appropriate fixed charge density, hydration and osmotic responsiveness, thereby displaying the capacity to restore disc height and function. Preliminary biomechanical tests using a degenerate explant model showed that the implant adapts to the space into which it is injected and restores stiffness. These hydrogels mimic the role taken by glycosaminoglycans in vivo and, unlike other hydrogels, provide an intrinsic swelling pressure, which can maintain disc hydration and height under the high and variable compressive loads encountered in vivo. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Recently, we demonstrated the possibility to extend the range of capillary electrophoresis (CE) applications to the separation of non-water-soluble synthetic polymers. This work focuses on the control of the electro-osmotic flow (EOF) and on the limitation of the solute adsorption in nonaqueous electrolytes. For these purposes, different strategies were investigated. For the initial, a viscous additive (ethylene glycol or glycerol) was used in the electrolyte in order to decrease the EOF magnitude and, possibly, to compete with solute adsorption. A second strategy was to modify, before separation, the fused-silica capillary wall by the adsorption of poly(ethylene oxide) (PEO) via hydrogen bonding. The influence of the molecular mass of the adsorbed PEO on the EOF magnitude and direction was studied in electrolytes based on methanol/acetonitrile mixtures containing ammonium ions. For PEO molecular masses above 1000 g/mol, reversed (anodic) EOF were reported in accordance with previous results obtained with PEO covalently bonded capillaries. The influence of the nature and the concentration of the background electrolyte cation on the EOF magnitude and direction were also investigated. A third strategy consisted in modifying the capillary wall by the adsorption of a cationic polyelectrolyte layer. Advantageously, this polyelectrolyte layer suppressed the adsorption of the polymer solutes onto the capillary wall. The results obtained in this work confirm the high potential and the versatility of CE for the characterization of ionizable organic polymers in nonaqueous media.
Resumo:
In recent years, there has been considerable interest in the potential antibacterial properties that bioactive glasses may possess. However, there have been several conflicting reports on the antibacterial efficacy of 45S5 Bioglass®. Various mechanisms regarding its mode of action have been proposed, such as changes in the environmental pH, increased osmotic pressure, and ‘needle like’ sharp glass debris which could potentially damage prokaryotic cell walls and thus inactivate bacteria. In this current study, a systematic investigation was undertaken on the antibacterial efficacy of 45S5 Bioglass® on Escherichia coli NCTC 10538 and Staphylococcus aureus ATCO 6538 under a range of clinically relevant scenarios including varying Bioglass® concentration, direct and indirect contact between Bioglass® and microorganisms, static and shaking incubation conditions, elevated and neutralised pH environments. The results demonstrated that under elevated pH conditions, Bioglass® particles has no antibacterial effect on S. aureus whilst, a concentration dependent antibacterial effect against E. coli was observed. However, the antibacterial activity ceased when the pH of the media was neutralised. The results of this current study therefore suggest that the mechanism of antibacterial activity of Bioglass® is associated with changes in the environmental pH; an environment that is less likely to occur in vivo due to buffering of the system.
Resumo:
The body of work presented in this thesis are in three main parts: [1] the effect of ultrasound on freezing events of ionic systems, [2] the importance of formulation osmolality in freeze drying, and [3] a novel system for increasing primary freeze drying rate. Chapter 4 briefly presents the work on method optimisation, which is still very much in its infancy. Aspects of freezing such as nucleation and ice crystal growth are strongly related with ice crystal morphology; however, the ice nucleation process typically occurs in a random, non-deterministic and spontaneous manner. In view of this, ultrasound, an emerging application in pharmaceutical sciences, has been applied to aid in the acceleration of nucleation and shorten the freezing process. The research presented in this thesis aimed to study the effect of sonication on nucleation events in ionic solutions, and more importantly how sonication impacts on the freezing process. This work confirmed that nucleation does occur in a random manner. It also showed that ultrasonication aids acceleration of the ice nucleation process and increases the freezing rate of a solution. Cryopreservation of animal sperm is an important aspect of breeding in animal science especially for endangered species. In order for sperm cryopreservation to be successful, cryoprotectants as well as semen extenders are used. One of the factors allowing semen preservation media to be optimum is the osmolality of the semen extenders used. Although preservation of animal sperm has no relation with freeze drying of pharmaceuticals, it was used in this thesis to make a case for considering the osmolality of a formulation (prepared for freeze drying) as a factor for conferring protein protection against the stresses of freeze drying. The osmolalities of some common solutes (mostly sugars) used in freeze drying were determined (molal concentration from 0.1m to 1.2m). Preliminary investigation on the osmolality and osmotic coefficients of common solutes were carried out. It was observed that the osmotic coefficient trend for the sugars analysed could be grouped based on the types of sugar they are. The trends observed show the need for further studies to be carried out with osmolality and to determine how it may be of importance to protein or API protection during freeze drying processes. Primary drying is usually the longest part of the freeze drying process, and primary drying times lasting days or even weeks are not uncommon; however, longer primary drying times lead to longer freeze drying cycles, and consequently increased production costs. Much work has been done previously by others using different processes (such as annealing) in order to improve primary drying times; however, these do not come without drawbacks. A novel system involving the formation of a frozen vial system which results in the creation of a void between the formulation and the inside wall of a vial has been devised to increase the primary freeze drying rate of formulations without product damage. Although the work is not nearly complete, it has been shown that it is possible to improve and increase the primary drying rate of formulations without making any modifications to existing formulations, changing storage vials, or increasing the surface area of freeze dryer shelves.
Resumo:
We consider the effects of salt (sodium iodide) on pristine carbon nanotube (CNT) dispersions in an organic solvent, N-methyl-2-pyrrolidone (NMP). We investigate the molecular-scale mechanisms of ion interactions with the nanotube surface and we show how the microscopic ion-surface interactions affect the stability of CNT dispersions in NMP. In our study we use a combination of fully atomistic Molecular Dynamics simulations of sodium and iodide ions at the CNT-NMP interface with direct experiments on the CNT dispersions. In the experiments we analyze the effects of salt on the stability of the dispersions by photoluminescence (PL) and optical absorption spectroscopy of the samples as well as by visual inspection. By fully atomistic Molecular Dynamics simulations we investigate the molecular-scale mechanisms of sodium and iodide ion interactions with the nanotube surface. Our simulations reveal that both ions are depleted from the CNT surface in the CNT-NMP dispersions mainly due to the two reasons: (1) there is a high energy penalty for the ion partial desolvation at the CNT surface; (2) NMP molecules form a dense solvation layer at the CNT surface that prevents ions to come close to the CNT surface. As a result, an increase of the salt concentration increases the "osmotic" stress in the CNT-NMP system and, thus, decreases the stability of the CNT dispersions in NMP. Direct experiments confirm the simulation results: addition of NaI salt into the NMP dispersions of pristine CNTs leads to precipitation of CNTs (bundle formation) even at very small salt concentration (∼10 -3 mol L -1). In line with the simulation predictions, the effect increases with the increase of the salt concentration. Overall, our results show that dissolved salt ions have strong effects on the stability of CNT dispersions. Therefore, it is possible to stimulate the bundle formation in the CNT-NMP dispersions and regulate the overall concentration of nanotubes in the dispersions by changing the NaI concentration in the solvent. © 2012 The Royal Society of Chemistry.
Resumo:
A new type of fibre-optic biochemical concentration sensor based on a polymer optical fibre Bragg grating (POFBG) is proposed. The wavelength of the POFBG varies as a function of analyte concentration. The feasibility of this sensing concept is demonstrated by a saline concentration sensor. When polymer fibre is placed in a water based solution the process of osmosis takes place in this water-fibre system. An osmotic pressure which is proportional to the solution concentration, will apply to the fibre in addition to the hydraulic pressure. It tends to drive the water content out of the fibre and into the surrounding solution. When the surrounding solution concentration increases the osmotic pressure increases to drive the water content out of the fibre, consequently increasing the differential hydraulic pressure and reducing the POFBG wavelength. This process will stop once there is a balance between the osmotic pressure and the differential hydraulic pressure. Similarly when the solution concentration decreases the osmotic pressure decreases, leading to a dominant differential hydraulic pressure which drives the water into the fibre till a new pressure balance is established. Therefore the water content in the polymer fibre - and consequently the POFBG wavelength - depends directly on the solution concentration. A POFBG wavelength change of 0.9 nm was measured for saline concentration varying from 0 to 22%. For a wavelength interrogation system with a resolution of 1 pm, a measurement of solution concentration of 0.03% can be expected.
Resumo:
The presence of chronic inflammation is associated with increased nutrient availability during obesity or type 2 diabetes which contributes to the development of complications such as atherosclerosis, stroke and myocardial infarction. The link between increased nutrient availability and inflammatory response remains poorly understood. The functioning of monocytes, the primary instigators of the inflammatory response was assessed in response to obesity and increased glucose availability. Monocyte microRNA expression was assessed in obese individuals prior to and up to one year after bariatric surgery. A number of microRNAs were identified to be dysregulated in obesity, some of which have previously been linked to the regulation of monocyte inflammatory responses including the microRNAs 146a-5p and 424-5p. Weight loss in response to bariatric surgery lead to the reversal of microRNA changes towards control values. In vitro treatments of THP-1 monocytes with high concentrations of D-glucose resulted in decreased intracellular NAD+:NADH ratio, decreased SIRT1 deacetylase activity and increased P65 acetylation. However the increased osmotic concentration inhibited LPS induced inflammatory response and TNFα mRNA expression. In vitro treatment of primary human monocytes with increased concentrations of D-glucose resulted in increased secretion of a number of inflammatory cytokines and increased expression of TNFα mRNA. Treatment also resulted in decreased intracellular NAD+:NADH ratio and increased binding of acetylated P65 to the TNFα promoter region. In vitro treatments of primary monocytes also replicated the altered expression of the microRNAs 146a-5p and miR-424-5p, as seen in obese individuals. In conclusion a number of changes in monocyte function were observed in response to obesity and treatment with high concentrations of D-glucose. These may lead to the dysregulation of inflammatory responses contributing to the development of co-morbidities.
Resumo:
It is estimated that 69-75 million people worldwide will suffer a traumatic brain injury (TBI) or stroke each year. Brain oedema caused by TBI or following a stroke, together with other disorders of the brain cost Europe €770 billion in 2014. Aquaporins (AQP) are transmembrane water channels involved in many physiologies and are responsible for the maintenance of water homeostasis. They react rapidly to changes in osmolarity by transporting water through their highly selective central pore to maintain tonicity and aid in cell volume regulation. We have previously shown that recombinant AQP1-GFP trafficking occurs in a proteinkinase C-microtubule dependant manner in HEK-293 cells in response to hypotonicity. This trafficking mechanism is also reliant on the presence of calcium and its messenger-binding protein calmodulin and results in increased cell surface expression of AQP1 in a time-scale of ~30 seconds. There is currently very little research into the trafficking mechanisms of endogenous AQPs in primary cells. AQP4 is the most abundantly expressed AQP within the brain, it is localised to the astrocytic end-feet, in contact with the blood vessels at the blood-brain-barrier. In situations where the exquisitely-tuned osmotic balance is disturbed, high water permeability can become detrimental. AQP4-mediated water influx causes rapid brain swelling, resulting in death or long term brain damage. Previous research has shown that AQP4 knock-out mice were protected from the formation of cytotoxic brain oedema in a stroke model, highlighting AQP4 as a key drug target for this pathology. As there are currently no treatments available to restrict the flow of water through AQP4 as all known inhibitors are either cytotoxic or non-specific, controlling the mechanisms involved in the regulation of AQP4 in the brain could provide a therapeutic solution to such diseases. Using cell surface biontinylation of endogenous AQP4 in primary rat astrocytes followed by neutraavidin based ELISA we have shown that AQP4 cell surface localisation increases by 2.7 fold after 5 minutes hypotonic treatment at around 85 mOsm/kg H2O. We have also shown that this rapid relocalisation of AQP4 is regulated by PKA, calmodulin, extra-cellular calcium and actin. In summary we have shown that rapid translocation of endogenous AQP4 occurs in primary rat astrocytes in response to hypotonic stimuli; this mechanism is PKA, calcium, actin and calmodulin dependant. AQP4 has the potential to provide a treatment for the development of brain oedema.
Resumo:
One of the hallmarks of bacterial survival is their ability to adapt rapidly to changing environmental conditions. Niche adaptation is a response to the signals received that are relayed, often to regulators that modulate gene expression. In the post-genomic era, DNA microarrays are used to study the dynamics of gene expression on a global scale. Numerous studies have used Pseudomonas aeruginosa--a Gram-negative environmental and opportunistic human pathogenic bacterium--as the model organism in whole-genome transcriptome analysis. This paper reviews the transcriptome studies that have led to immense advances in our understanding of the biology of this intractable human pathogen. Comparative analysis of 23 P. aeruginosa transcriptome studies has led to the identification of a unique set of genes that are signal specific and a core set that is differentially regulated. The 303 genes in the core set are involved in bacterial homeostasis, making them attractive therapeutic targets.
Resumo:
Several studies have been developed regarding health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various microorganisms, including Candida tropicalis, etiologic agent of both superficial infections such as systemic, as well as indicator of fecal contamination for the environment. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates of C. tropicalis and observed a great variation between them for the various virulence factors evaluated. In general, environmental isolates were more adherent to CEBH than C. tropicalis ATCC13803 reference strain, besides the fact they were also highly biofilm producers. In relation to morphogenesis, most isolates presented wrinkled phenotype in Spider medium (34 isolates, 54.8 %). When assessing enzyme activity, most isolates had higher proteinase production than C. tropicalis ATCC13803 reference strain. In addition, 35 isolates (56.4 %) had high hemolytic activity (hemolysis index > 55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride, corroborating to high survival capacity described for this yeast at marine environment. Finally, with regard to sensitivity to antifungal drugs, it was observed high resistance to the azoles tested, with the occurrence of the "Low-high" phenomenon and similar effect to the paradoxical growth which occurs to the echinocandins. For the three azoles tested we verified that 15 strains were resistant (24.2 %). Some strains were also resistant to amphotericin B (14 isolates, 22.6 %), while all of them were sensitive for the echinocandins tested. Therefore, our results demonstrate that C. tropicalis isolated from the sand of northeast of Brazil can fully express virulence attributes and showed a high persistence capacity on the coastal environment, in addition of being significantly resistant to most applied antifungals in current clinical practice. This constitutes a potential health risk to visitors of this environment, especially immunocompromised individuals and those with extreme age range.
Resumo:
Amphipods living at the underside of Arctic sea ice are exposed to varying salinities due to freezing and melting, and have to cope with the resulting osmotic stress. Extracellular osmotic and ionic regulation at different salinities, thermal hysteresis, and supercooling points (SCPs) were studied in the under-ice amphipod Apherusa glacialis. The species is euryhaline, capable to regulate hyperosmotically at salinities S(R) < 30 g/kg, and osmoconforms at salinities S(R) >= 30 g/kg. Hyperosmotic regulation is an adaptation to thrive in low-salinity meltwater below the ice. Conforming to the ambient salinity during freezing reduces the risk of internal ice formation. Thermal hysteresis was not observed in the haemolymph of A. glacialis. The SCP of the species was -7.8 ± 1.9°C. Several ions were specifically downregulated ([Mg2+], [SO4]2-), or upregulated ([K+], [Ca2+]) in comparison to the medium. Strong downregulation of [Mg2+], is probably necessary to avoid an anaesthetic effect at low temperatures.
Resumo:
Introduction Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation. Results For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid-base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation. Conclusion The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid-base regulation. New set points of acid-base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2.
Resumo:
CHAPTER II - This study evaluated the effects of two different types of acute aerobic exercise on the osmotic stability of human erythrocyte membrane and on different hematological and biochemical variables that are associated with this membrane property. The study population consisted of 20 healthy and active men. Participants performed single sessions of two types of exercise. The first session consisted of 60 min of moderate-intensity continuous exercise (MICE). The second session, executed a week later, consisted of high-intensity interval exercise (HIIE) until exhaustion. The osmotic stability of the erythrocyte membrane was represented by the inverse of the salt concentration (1/H50) at the midpoint of the sigmoidal curve of dependence between the absorbance of hemoglobin and the NaCl concentration. The values of 1/H50 changed from 2.29 ± 0.1 to 2.33 ± 0.09 after MICE and from 2.30 ± 0.08 to 2.23 ± 0.12 after HIIE. In MICE has occurred an increase in the mean corpuscular volume, probably due to in vivo lysis of older erythrocytes, with preservation of cells that were larger and more resistant to in vitro lysis. The study showed that a single bout of acute exercise affected the erythrocyte osmotic stability, which increased after MICE and decreased after HIIE.
Resumo:
Background
It is unknown whether a conservative approach to fluid administration or deresuscitation (active removal of fluid using diuretics or renal replacement therapy) is beneficial following haemodynamic stabilisation of critically ill patients.
Purpose
To evaluate the efficacy and safety of conservative or deresuscitative fluid strategies in adults and children with acute respiratory distress syndrome (ARDS), sepsis or systemic inflammatory response syndrome (SIRS) in the post-resuscitation phase of critical illness.
Methods
We searched Medline, EMBASE and the Cochrane central register of controlled trials from 1980 to June 2016, and manually reviewed relevant conference proceedings from 2009 to the present. Two reviewers independently assessed search results for inclusion and undertook data extraction and quality appraisal. We included randomised trials comparing fluid regimens with differing fluid balances between groups, and observational studies investigating the relationship between fluid balance and clinical outcomes.
Results
Forty-nine studies met the inclusion criteria. Marked clinical heterogeneity was evident. In a meta-analysis of 11 randomised trials (2051 patients) using a random-effects model, we found no significant difference in mortality with conservative or deresuscitative strategies compared with a liberal strategy or usual care [pooled risk ratio (RR) 0.92, 95 % confidence interval (CI) 0.82–1.02, I2 = 0 %]. A conservative or deresuscitative strategy resulted in increased ventilator-free days (mean difference 1.82 days, 95 % CI 0.53–3.10, I2 = 9 %) and reduced length of ICU stay (mean difference −1.88 days, 95 % CI −0.12 to −3.64, I2 = 75 %) compared with a liberal strategy or standard care.
Conclusions
In adults and children with ARDS, sepsis or SIRS, a conservative or deresuscitative fluid strategy results in an increased number of ventilator-free days and a decreased length of ICU stay compared with a liberal strategy or standard care. The effect on mortality remains uncertain. Large randomised trials are needed to determine optimal fluid strategies in critical illness.