884 resultados para Distributed network protocol
Resumo:
Bluetooth wireless technology is a robust short-range communications system designed for low power (10 meter range) and low cost. It operates in the 2.4 GHz Industrial Scientific Medical (ISM) band and it employs two techniques for minimizing interference: a frequency hopping scheme which nominally splits the 2.400 - 2.485 GHz band in 79 frequency channels and a time division duplex (TDD) scheme which is used to switch to a new frequency channel on 625 μs boundaries. During normal operation a Bluetooth device will be active on a different frequency channel every 625 μs, thus minimizing the chances of continuous interference impacting the performance of the system. The smallest unit of a Bluetooth network is called a piconet, and can have a maximum of eight nodes. Bluetooth devices must assume one of two roles within a piconet, master or slave, where the master governs quality of service and the frequency hopping schedule within the piconet and the slave follows the master’s schedule. A piconet must have a single master and up to 7 active slaves. By allowing devices to have roles in multiple piconets through time multiplexing, i.e. slave/slave or master/slave, the Bluetooth technology allows for interconnecting multiple piconets into larger networks called scatternets. The Bluetooth technology is explored in the context of enabling ad-hoc networks. The Bluetooth specification provides flexibility in the scatternet formation protocol, outlining only the mechanisms necessary for future protocol implementations. A new protocol for scatternet formation and maintenance - mscat - is presented and its performance is evaluated using a Bluetooth simulator. The free variables manipulated in this study include device activity and the probabilities of devices performing discovery procedures. The relationship between the role a device has in the scatternet and it’s probability of performing discovery was examined and related to the scatternet topology formed. The results show that mscat creates dense network topologies for networks of 30, 50 and 70 nodes. The mscat protocol results in approximately a 33% increase in slaves/piconet and a reduction of approximately 12.5% of average roles/node. For 50 node scenarios the set of parameters which creates the best determined outcome is unconnected node inquiry probability (UP) = 10%, master node inquiry probability (MP) = 80% and slave inquiry probability (SP) = 40%. The mscat protocol extends the Bluetooth specification for formation and maintenance of scatternets in an ad-hoc network.
Resumo:
Rationale: Focal onset epileptic seizures are due to abnormal interactions between distributed brain areas. By estimating the cross-correlation matrix of multi-site intra-cerebral EEG recordings (iEEG), one can quantify these interactions. To assess the topology of the underlying functional network, the binary connectivity matrix has to be derived from the cross-correlation matrix by use of a threshold. Classically, a unique threshold is used that constrains the topology [1]. Our method aims to set the threshold in a data-driven way by separating genuine from random cross-correlation. We compare our approach to the fixed threshold method and study the dynamics of the functional topology. Methods: We investigate the iEEG of patients suffering from focal onset seizures who underwent evaluation for the possibility of surgery. The equal-time cross-correlation matrices are evaluated using a sliding time window. We then compare 3 approaches assessing the corresponding binary networks. For each time window: * Our parameter-free method derives from the cross-correlation strength matrix (CCS)[2]. It aims at disentangling genuine from random correlations (due to finite length and varying frequency content of the signals). In practice, a threshold is evaluated for each pair of channels independently, in a data-driven way. * The fixed mean degree (FMD) uses a unique threshold on the whole connectivity matrix so as to ensure a user defined mean degree. * The varying mean degree (VMD) uses the mean degree of the CCS network to set a unique threshold for the entire connectivity matrix. * Finally, the connectivity (c), connectedness (given by k, the number of disconnected sub-networks), mean global and local efficiencies (Eg, El, resp.) are computed from FMD, CCS, VMD, and their corresponding random and lattice networks. Results: Compared to FMD and VMD, CCS networks present: *topologies that are different in terms of c, k, Eg and El. *from the pre-ictal to the ictal and then post-ictal period, topological features time courses that are more stable within a period, and more contrasted from one period to the next. For CCS, pre-ictal connectivity is low, increases to a high level during the seizure, then decreases at offset. k shows a ‘‘U-curve’’ underlining the synchronization of all electrodes during the seizure. Eg and El time courses fluctuate between the corresponding random and lattice networks values in a reproducible manner. Conclusions: The definition of a data-driven threshold provides new insights into the topology of the epileptic functional networks.
Resumo:
Clinical studies indicate that exaggerated postprandial lipemia is linked to the progression of atherosclerosis, leading cause of Cardiovascular Diseases (CVD). CVD is a multi-factorial disease with complex etiology and according to the literature postprandial Triglycerides (TG) can be used as an independent CVD risk factor. Aim of the current study is to construct an Artificial Neural Network (ANN) based system for the identification of the most important gene-gene and/or gene-environmental interactions that contribute to a fast or slow postprandial metabolism of TG in blood and consequently to investigate the causality of postprandial TG response. The design and development of the system is based on a dataset of 213 subjects who underwent a two meals fatty prandial protocol. For each of the subjects a total of 30 input variables corresponding to genetic variations, sex, age and fasting levels of clinical measurements were known. Those variables provide input to the system, which is based on the combined use of Parameter Decreasing Method (PDM) and an ANN. The system was able to identify the ten (10) most informative variables and achieve a mean accuracy equal to 85.21%.
Resumo:
This paper studies the energy-efficiency and service characteristics of a recently developed energy-efficient MAC protocol for wireless sensor networks in simulation and on a real sensor hardware testbed. This opportunity is seized to illustrate how simulation models can be verified by cross-comparing simulation results with real-world experiment results. The paper demonstrates that by careful calibration of simulation model parameters, the inevitable gap between simulation models and real-world conditions can be reduced. It concludes with guidelines for a methodology for model calibration and validation of sensor network simulation models.
Resumo:
In Part 1 of this article we discussed the need for information quality and the systematic management of learning materials and learning arrangements. Digital repositories, often called Learning Object Repositories (LOR), were introduced as a promising answer to this challenge. We also derived technological and pedagogical requirements for LORs from a concretization of information quality criteria for e-learning technology. This second part presents technical solutions that particularly address the demands of open education movements, which aspire to a global reuse and sharing culture. From this viewpoint, we develop core requirements for scalable network architectures for educational content management. We then present edu-sharing, an advanced example of a network of homogeneous repositories for learning resources, and discuss related technology. We conclude with an outlook in terms of emerging developments towards open and networked system architectures in e-learning.
Resumo:
Recent advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing environmental conditions and number of users, application performance might suffer, leading to Service Level Agreement (SLA) violations and inefficient use of hardware resources. We introduce a system for controlling the complexity of scaling applications composed of multiple services using mechanisms based on fulfillment of SLAs. We present how service monitoring information can be used in conjunction with service level objectives, predictions, and correlations between performance indicators for optimizing the allocation of services belonging to distributed applications. We validate our models using experiments and simulations involving a distributed enterprise information system. We show how discovering correlations between application performance indicators can be used as a basis for creating refined service level objectives, which can then be used for scaling the application and improving the overall application's performance under similar conditions.
Resumo:
Over the past several years the topics of energy consumption and energy harvesting have gained significant importance as a means for improved operation of wireless sensor and mesh networks. Energy-awareness of operation is especially relevant for application scenarios from the domain of environmental monitoring in hard to access areas. In this work we reflect upon our experiences with a real-world deployment of a wireless mesh network. In particular, a comprehensive study on energy measurements collected over several weeks during the summer and the winter period in a network deployment in the Swiss Alps is presented. Energy performance is monitored and analysed for three system components, namely, mesh node, battery and solar panel module. Our findings cover a number of aspects of energy consumption, including the amount of load consumed by a mesh node, the amount of load harvested by a solar panel module, and the dependencies between these two. With our work we aim to shed some light on energy-aware network operation and to help both users and developers in the planning and deployment of a new wireless (mesh) network for environmental research.
Resumo:
We investigate the problem of distributed sensors' failure detection in networks with a small number of defective sensors, whose measurements differ significantly from the neighbor measurements. We build on the sparse nature of the binary sensor failure signals to propose a novel distributed detection algorithm based on gossip mechanisms and on Group Testing (GT), where the latter has been used so far in centralized detection problems. The new distributed GT algorithm estimates the set of scattered defective sensors with a low complexity distance decoder from a small number of linearly independent binary messages exchanged by the sensors. We first consider networks with one defective sensor and determine the minimal number of linearly independent messages needed for its detection with high probability. We then extend our study to the multiple defective sensors detection by modifying appropriately the message exchange protocol and the decoding procedure. We show that, for small and medium sized networks, the number of messages required for successful detection is actually smaller than the minimal number computed theoretically. Finally, simulations demonstrate that the proposed method outperforms methods based on random walks in terms of both detection performance and convergence rate.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.
Resumo:
This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.
Resumo:
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.
Resumo:
Wireless mobile sensor networks are enlarging the Internet of Things (IoT) portfolio with a huge number of multimedia services for smart cities. Safety and environmental monitoring multimedia applications will be part of the Smart IoT systems, which aim to reduce emergency response time, while also predicting hazardous events. In these mobile and dynamic (possible disaster) scenarios, opportunistic routing allows routing decisions in a completely distributed manner, by using a hop- by-hop route decision based on protocol-specific characteristics, and a predefined end-to-end path is not a reliable solution. This enables the transmission of video flows of a monitored area/object with Quality of Experience (QoE) support to users, headquarters or IoT platforms. However, existing approaches rely on a single metric to make the candidate selection rule, including link quality or geographic information, which causes a high packet loss rate, and reduces the video perception from the human standpoint. This article proposes a cross-layer Link quality and Geographical-aware Opportunistic routing protocol (LinGO), which is designed for video dissemination in mobile multimedia IoT environments. LinGO improves routing decisions using multiple metrics, including link quality, geographic loca- tion, and energy. The simulation results show the benefits of LinGO compared with well-known routing solutions for video transmission with QoE support in mobile scenarios.
Resumo:
Mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) have been attracting increasing attention for decades due to their broad civilian and military applications. Basically, a MANET or WSN is a network of nodes connected by wireless communication links. Due to the limited transmission range of the radio, many pairs of nodes in MANETs or WSNs may not be able to communicate directly, hence they need other intermediate nodes to forward packets for them. Routing in such types of networks is an important issue and it poses great challenges due to the dynamic nature of MANETs or WSNs. On the one hand, the open-air nature of wireless environments brings many difficulties when an efficient routing solution is required. The wireless channel is unreliable due to fading and interferences, which makes it impossible to maintain a quality path from a source node to a destination node. Additionally, node mobility aggravates network dynamics, which causes frequent topology changes and brings significant overheads for maintaining and recalculating paths. Furthermore, mobile devices and sensors are usually constrained by battery capacity, computing and communication resources, which impose limitations on the functionalities of routing protocols. On the other hand, the wireless medium possesses inherent unique characteristics, which can be exploited to enhance transmission reliability and routing performance. Opportunistic routing (OR) is one promising technique that takes advantage of the spatial diversity and broadcast nature of the wireless medium to improve packet forwarding reliability in multihop wireless communication. OR combats the unreliable wireless links by involving multiple neighboring nodes (forwarding candidates) to choose packet forwarders. In opportunistic routing, a source node does not require an end-to-end path to transmit packets. The packet forwarding decision is made hop-by-hop in a fully distributed fashion. Motivated by the deficiencies of existing opportunistic routing protocols in dynamic environments such as mobile ad-hoc networks or wireless sensor networks, this thesis proposes a novel context-aware adaptive opportunistic routing scheme. Our proposal selects packet forwarders by simultaneously exploiting multiple types of cross-layer context information of nodes and environments. Our approach significantly outperforms other routing protocols that rely solely on a single metric. The adaptivity feature of our proposal enables network nodes to adjust their behaviors at run-time according to network conditions. To accommodate the strict energy constraints in WSNs, this thesis integrates adaptive duty-cycling mechanism to opportunistic routing for wireless sensor nodes. Our approach dynamically adjusts the sleeping intervals of sensor nodes according to the monitored traffic load and the estimated energy consumption rate. Through the integration of duty cycling of sensor nodes and opportunistic routing, our protocol is able to provide a satisfactory balance between good routing performance and energy efficiency for WSNs.
Resumo:
Cloud Computing has evolved to become an enabler for delivering access to large scale distributed applications running on managed network-connected computing systems. This makes possible hosting Distributed Enterprise Information Systems (dEISs) in cloud environments, while enforcing strict performance and quality of service requirements, defined using Service Level Agreements (SLAs). {SLAs} define the performance boundaries of distributed applications, and are enforced by a cloud management system (CMS) dynamically allocating the available computing resources to the cloud services. We present two novel VM-scaling algorithms focused on dEIS systems, which optimally detect most appropriate scaling conditions using performance-models of distributed applications derived from constant-workload benchmarks, together with SLA-specified performance constraints. We simulate the VM-scaling algorithms in a cloud simulator and compare against trace-based performance models of dEISs. We compare a total of three SLA-based VM-scaling algorithms (one using prediction mechanisms) based on a real-world application scenario involving a large variable number of users. Our results show that it is beneficial to use autoregressive predictive SLA-driven scaling algorithms in cloud management systems for guaranteeing performance invariants of distributed cloud applications, as opposed to using only reactive SLA-based VM-scaling algorithms.