970 resultados para Dispersal patterns
Resumo:
Bengal slow lorises (Nycticebus bengalensis) and pygmy slow lorises (Nycticebus pygmaeus) are nocturnal which creates difficulties to study them in the field. There is a scarcity of data on them and their population genetics are poorly understood. We sequ
Resumo:
The East Asian respond with a marked facial flushing and mild to moderate symptoms of intoxication after drinking the amounts of alcohol that has no detectable effect on European. The alcohol sensitivity in Orientals is due to a delayed oxidation of aceta
Resumo:
Seasonal patterns of 21 fisheries in Karnataka (after isolation from time-series components) are presented. Depending on the pattern of seasonal fluctuation in landings, 19 fisheries have been grouped into five patterns, A, B, C, D and E. Ribbon fishes and 'other clupeids' did not exhibit any significant seasonal pattern. Pattern A with highest landings in the 4th quarter (October to December), followed by the 1, 2 and 3 quarters, is the most common in 10 species/groups (comprising 78% of the total landings). Harmonic analysis has been carried out using the seasonal indices.
Resumo:
Marine landing data for Karnataka during 1956-1978 were subjected to time series analysis and cyclical periodicities isolated in the case of seven fisheries namely, ribbon fish (five year cycle); Caranx spp., Leiognathus spp, and mackerel (six year cycle each); the combined landings of Hemirhamphus spp. and Belone spp.,'Lesser Sardines' and 'Other Clupeids' (seven year cycle each). 'Total' demonstrated an eight-year cyclical periodicity.
Guided growth of neurons and glia using microfabricated patterns of parylene-C on a SiO2 background.
Resumo:
This paper describes a simple technique for the patterning of glia and neurons. The integration of neuronal patterning to Multi-Electrode Arrays (MEAs), planar patch clamp and silicon based 'lab on a chip' technologies necessitates the development of a microfabrication-compatible method, which will be reliable and easy to implement. In this study a highly consistent, straightforward and cost effective cell patterning scheme has been developed. It is based on two common ingredients: the polymer parylene-C and horse serum. Parylene-C is deposited and photo-lithographically patterned on silicon oxide (SiO(2)) surfaces. Subsequently, the patterns are activated via immersion in horse serum. Compared to non-activated controls, cells on the treated samples exhibited a significantly higher conformity to underlying parylene stripes. The immersion time of the patterns was reduced from 24 to 3h without compromising the technique. X-ray photoelectron spectroscopy (XPS) analysis of parylene and SiO(2) surfaces before and after immersion in horse serum and gel based eluant analysis suggests that the quantity and conformation of proteins on the parylene and SiO(2) substrates might be responsible for inducing glial and neuronal patterning.
Resumo:
This study gives an account of distributional patterns of Brachyuran larvae in the Manora Channel from January to November 1995. The planktonic sampling was carried out during day time from surface and sub-surface waters of station I and II (certain sites) at shallow depths (15'-20') using Bongo net of 300 micron mesh size. In all 19527 larvae were obtained through fourteen sampling. These brachyuran larvae belonged to nine families and twenty four species: Ebalia sagittifera, Philyra sp., Philyra scabriuscula (Leucosiidae), Schizophyris aspera (Majidae), Charybdis annulata, Charybdis sp. (Portunidae), Xanthid sp A., B. and C. (Xanthidae), Pilumnus karachiensis, Pilumnus sp. (Pilumnidae), Menippe rumphii (Oziidae), Pinnotheres sp. A, and B. (Pinnotheridae), Nasima dotilliforme, Serenella indica, Macrophthalmus (Mareotis) depressus, Macrophthalmus sp., Dotilla blanfordi, Ocypodid sp. A., B. and C. (Ocypodidae), Metopograpsus thukuhar and Clistocoeloma lanatum (Grapsidae). This study is based on identification, occurrence, distributional patterns along Manora Channel and percentage composition of brachyuran larvae in the area, collected during 1995.
Resumo:
Fea's tree rat (Chiromyscus chiropus) is a very rare species which there are only a few specimens in the world. The chromosomes of two male specimens, collected from Xishuanbanna, Yunnan, are analysed by several banding technique (G-, C-bands, as well as Ag-staining). The diploid chromosome number is 22, and autosomes comprise 5 pairs of metacentrics, 2 pairs of subacrocentrics, and 3 pairs of acrocentrics. The X chromosome is a acrocentric, and Y is a micro-chromosome, almost a point, which could be a marker chromosome of the species and the genus. The centromeric C-bands are very faint, and C-bands of Nos. 1, 2, 9 and Y chromosome are negative. Only one pair Ag-NORs was found on No. 10 in the silver-stained karyotype. The relationship between morphologic and chromosomal features was discussed, and C-banded karyotype evolutionary trend has also been discussed. Moreover, the conventional karyotype of Niviventer confucianus was described.
Resumo:
We studied the altitudinal ranging of one habituated group of black-crested gibbons (Nomascus concolor) at Dazhaizi, Mt. Wuliang, Yunnan, China, between March 2005 and April 2006. The group ranged from 1,900 to 2,680 m above sea level. Food distribution was the driving force behind the altitudinal ranging patterns of the study group. They spent 83.2% of their time ranging between 2,100 and 2,400 m, where 75.8% of important food patches occurred. They avoided using the area above 2,500 m despite a lack of human disturbance there, apparently because there were few food resources. Temperature had a limited effect on seasonal altitudinal ranging but probably explained the diel altitudinal ranging of the group, which tended to use the lower zone in the cold morning and the higher zone in the warm afternoon. Grazing goats, the main disturbance, were limited to below 2,100 m, which was defined as the high-disturbance area (HDA). Gibbons spent less time in the HDA and, when ranging there, spent more time feeding and travelling and less time resting and singing. Human activities directly influenced gibbon behaviour, might cause forest degradation and create dispersal barriers between populations. Copyright (C) 2010 S. Karger AG, Basel