876 resultados para Developmental explanation
Resumo:
The high hopes for rapid convergence of Eastern and Southern EU member states are increasingly being disappointed. With the onset of the Eurocrisis convergence has given way to divergence in the southern members, and many Eastern members have made little headway in closing the development gap. The EU´s performance compares unfavourably with East Asian success cases as well as with Western Europe´s own rapid catch-up to the USA after 1945. Historical experience indicates that successful catch up requires that less-developed economies to some extent are allowed to free-ride on an open international economic order. However, the EU´s model is based on the principle of a level-playing field, which militates against such a form of economic integration. The EU´s developmental model thus contrasts with the various strategies that have enabled successful catch up of industrial latecomers. Instead the EU´s current approach is more and more reminiscent of the relations between the pre-1945 European empires and their dependent territories. One reason for this unfortunate historical continuity is that the EU appears to have become entangled in its own myths. In the EU´s own interpretation, European integration is a peace project designed to overcome the almost continuous warfare that characterised the Westphalian system. As the sovereign state is identified as the root cause of all evil, any project to curtail its room of manoeuvre must ultimately benefit the common good. Yet, the existence of a Westphalian system of nation states is a myth. Empires and not states were the dominant actors in the international system for at least the last three centuries. If anything, the dawn of the age of the sovereign state in Western Europe occurred after 1945 with the disintegration of the colonial empires and thus historically coincided with the birth of European integration.
Resumo:
This paper seeks to explain why the European Union (EU) has had limited influence in Armenia and Azerbaijan in the framework of the European Neighbourhood Policy (ENP). Combining approaches from external governance, norm diffusion and structural foreign policy, it offers an explanation based on domestic factors in the two countries: the political regime, state capacity, political structures, domestic incentives and the perceived legitimacy of EU rules. Although willingness to reform appears to exist in Armenia, such willingness remains constrained by the country’s vulnerable geopolitical location and high dependence on Russia. By contrast, none of the domestic preconditions for EU influence identified by the analytical framework were found in Azerbaijan. The author argues that the Eastern Partnership has not properly addressed the extent to which the clan structures feed into informal political practices and enforce the sustainability of an existing regime in both countries, and that, in addition, the EU has underestimated the multipolar environment which the two countries have to operate in, making it unlikely that the current policy can reach its objectives in Armenia and Azerbaijan.
Resumo:
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Resumo:
Organisms from slime moulds to humans carefully regulate their macronutrient intake to optimize a wide range of life history characters including survival, stress resistance, and reproductive success. However, life history characters often differ in their response to nutrition, forcing organisms to make foraging decisions while balancing the trade-offs between these effects. To date, we have a limited understanding of how the nutritional environment shapes the relationship between life history characters and foraging decisions. To gain insight into the problem, we used a geometric framework for nutrition to assess how the protein and carbohydrate content of the larval diet affected key life history traits in the fruit fly, Drosophila melanogaster. In no-choice assays, survival from egg to pupae, female and male body size, and ovariole number - a proxy for female fecundity - were maximized at the highest protein to carbohydrate (P:C) ratio (1.5:1). In contrast, development time was minimized at intermediate P:C ratios, around 1:2. Next, we subjected larvae to two-choice tests to determine how they regulated their protein and carbohydrate intake in relation to these life history traits. Our results show that larvae targeted their consumption to P:C ratios that minimized development time. Finally, we examined whether adult females also chose to lay their eggs in the P:C ratios that minimized developmental time. Using a three-choice assay, we found that adult females preferentially laid their eggs in food P:C ratios that were suboptimal for all larval life history traits. Our results demonstrate that D. melanogaster larvae make foraging decisions that trade-off developmental time with body size, ovariole number, and survival. In addition, adult females make oviposition decisions that do not appear to benefit the larvae. We propose that these decisions may reflect the living nature of the larval nutritional environment in rotting fruit. These studies illustrate the interaction between the nutritional environment, life history traits, and foraging choices in D. melanogaster, and lend insight into the ecology of their foraging decisions.
Resumo:
Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules.
Resumo:
The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects.
Resumo:
By switching the level of analysis and aggregating data from the micro-level of individual cases to the macro-level, quantitative data can be analysed within a more case-based approach. This paper presents such an approach in two steps: In a first step, it discusses the combination of Social Network Analysis (SNA) and Qualitative Comparative Analysis (QCA) in a sequential mixed-methods research design. In such a design, quantitative social network data on individual cases and their relations at the micro-level are used to describe the structure of the network that these cases constitute at the macro-level. Different network structures can then be compared by QCA. This strategy allows adding an element of potential causal explanation to SNA, while SNA-indicators allow for a systematic description of the cases to be compared by QCA. Because mixing methods can be a promising, but also a risky endeavour, the methodological part also discusses the possibility that underlying assumptions of both methods could clash. In a second step, the research design presented beforehand is applied to an empirical study of policy network structures in Swiss politics. Through a comparison of 11 policy networks, causal paths that lead to a conflictual or consensual policy network structure are identified and discussed. The analysis reveals that different theoretical factors matter and that multiple conjunctural causation is at work. Based on both the methodological discussion and the empirical application, it appears that a combination of SNA and QCA can represent a helpful methodological design for social science research and a possibility of using quantitative data with a more case-based approach.
Resumo:
Long distance transport of amino acids is mediated by several families of differentially expressed amino acid transporters. The two genes AAP1 and AAP2 encode broad specificity H+-amino acid co-transporters and are expressed to high levels in siliques of Arabidopsis, indicating a potential role in supplying the seeds with organic nitrogen. The expression of both genes is developmentally controlled and is strongly induced in siliques at heart stage of embryogenesis, shortly before induction of storage protein genes. Histochemical analysis of transgenic plants expressing promoter-GUS fusions shows that the genes have non-overlapping expression patterns in siliques. AAP1 is expressed in the endosperm and the cotyledons whereas AAP2 is expressed in the vascular strands of siliques and in funiculi. The endosperm expression of AAP1 during early stages of seed development indicates that the endosperm serves as a transient storage tissue for organic nitrogen. Amino acids are transported in both xylem and phloem but during seed filling are imported only via the phloem. AAP2, which is expressed in the phloem of stems and in the veins supplying seeds, may function in uptake of amino acids assimilated in the green silique tissue, in the retrieval of amino acids leaking passively out of the phloem and in xylem-to-phloem transfer along the path. The promoters provide excellent tools to study developmental, hormonal and metabolic control of nitrogen nutrition during development and may help to manipulate the timing and composition of amino acid import into seeds.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"March 1937."
Resumo:
"A sequel to the Homophonic forms and Applied counterpoint."--Pref.
Resumo:
Supersedes report no. CG-D-188-75 (Dec. 1975)--with the same title.
Resumo:
Mode of access: Internet.