981 resultados para Density functional theory method
Resumo:
Two new one-dimensional heterometallic complexes, Mn3Na(L)(4)(CH3CO2)(MeOH)(2)]-(ClO4)(2)center dot 3H(2)O (1), Mn3Na(L)(4)(CH3CH2CO2)-(MeOH)(2)](ClO4)(2)center dot 2MeOH center dot H2O (2) LH2 = 2-methyl-2-(2-pyridyl)propane-1,3-diol], have been synthesized and characterized by X-ray crystallography. Both complexes feature Mn-II and Na-I ions in trigonal-prismatic geometries that are linked to octahedral Mn-IV ions by alkoxy bridges. Variable-temperature direct- and alternating-current magnetic susceptibility data indicated a spin ground state of S = 11/2 for both complexes. Density functional theory calculations performed on 1 supported this conclusion.
Resumo:
Poly (beta-L-malic acid) (PMLA) is a biodegradable polymer and it has various important applications in the biomedical field. In the present work the structural and spectral characteristics of PMLA have been studied by methods of infrared. Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) using oligomeric approach employing B3LYP with complete relaxation in the potential energy surface using 6-311++G (d, p) basis set. Based on results, we have discussed the correlation between the vibrational modes and the structure of the PMLA. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. The calculated infrared and the Raman spectra of the polymer based on DFT calculations show reasonable agreement with the experimental results. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
4-Alkoxy benzoic acids belong to an important class of thermotropic liquid crystals that are structurally simple and often used as starting materials for many novel mesogens. 4-Hexyloxybenzoic acid (HBA) is a homologue of the same series and exhibits an enantiotropic nematic phase. As this molecule could serve as an ideal model compound, high resolution C-13 NMR studies of HEA in solution, solid, and liquid crystalline phases have been undertaken. In the solid state, two-dimensional separation of undistorted powder patterns by effortless recoupling (2D SUPER) experiments have been carried out to estimate the magnitude of the components of the chemical shift anisotropy (GSA) tensor of all the aromatic carbons. These values have been used subsequently for calculating the orientational order parameters in the liquid crystalline phase. The GSA values computed by density functional theory (DFT) calculations showed good agreement with the 2D SUPER values. Additionally, C-13-H-1 dipolar couplings in the nematic phase have been determined by separated local field (SLF) spectroscopy at various temperatures and were used for computing the order parameters, which compared well with those calculated by using the chemical shifts. It is anticipated that the CSA values determined for MBA would be useful for the assignment of carbon chemical shifts and for the study of order and dynamics of structurally similar novel mesogens in their nematic phases.
Resumo:
Solvents are known to affect the triplet state structure and reactivity. In this paper, we have employed time-resolved resonance Raman (TR3) spectroscopy to understand solvent-induced subtle structural changes in the lowest excited triplet state of thioxanthone. Density functional theory (DFT) combined with the self-consistent reaction field (SCRF) implicit solvation model has been used to calculate the vibrational frequencies in the solvents. Here, we report a unique observation of the coexistence of two triplets, which has been substantiated by the probe wavelength-dependent Raman experiments. The coexistence of two triplets has been further supported by photoreduction experiments carried out at various temperatures.
Resumo:
The reaction of a tridentate Schiff base ligand HL (2-(3-dimethylaminopropylimino)-methyl]-phenol) with Ni(II) acetate or perchlorate salts in the presence of azide as coligand has led to two new Ni(II) complexes of formulas Ni3L2(OAc)(2)(mu(1,1)-N-3)(2)(H2O)(2)]center dot 2H(2)O (1) and Ni2L2(mu(1,1)-N-3) (mu(1,3)-N-3)](n)(2). Single crystal X-ray structures show that complex 1 is a linear trinuclear Ni(II) compound containing a mu(2)-phenwddo, an end-on (EO) azido and a syn-syn acetato bridge between the terminal and the central Ni(II) ions. Complex 2 can be viewed as a one-dimensional (1D) chain in which the triply bridged (di-mu(2)-phenoxido and EO azido) dimeric Ni-2 units are linked to each other in a zigzag pattern by a single end-to-end (EE) azido bridge. Variable-temperature magnetic susceptibility studies indicate the presence of moderate ferromagnetic exchange coupling in complex 1 with J value of 16.51(6) cm(-1). The magnetic behavior of 2 can be fitted in an alternating ferro- and antiferromagnetic model J(FM) = +34.2(2.8) cm(-1) and J(AF) = -21.6(1.1) cm(-1)] corresponding to the triple bridged dinuclear core and EE azido bridge respectively. Density functional theory (DFT) calculations were performed to corroborate the magnetic results of 1 and 2. The contributions of the different bridges toward magnetic interactions in both compounds have also been calculated.
Resumo:
The Fourier transform Raman and infrared (IR) spectra of the Ceramide 3 (CER3) have been recorded in the regions 200-3500 cm(-1) and 680-4000 cm(-1), respectively. We have calculated the equilibrium geometry, harmonic vibrational wavenumbers, electrostatic potential surfaces, absolute Raman scattering activities and IR absorption intensities by the density functional theory with B3LYP functionals having extended basis set 6-311G. This work is undertaken to study the vibrational spectra of CER3 completely and to identify the various normal modes with better wavenumber accuracy. Good consistency is found between the calculated results and experimental data for the IR and Raman spectra.
Resumo:
A new thieno3,2-b]thiophenediketopyrrolopyrrole-benzo1,2-b:4,5-b']dithio phene based narrow optical gap co-polymer (PTTDPP-BDT) has been synthesized and characterized for field-effect transistors and solar cells. In field-effect transistors the polymer exhibited ambipolar charge transport behaviour with maximum hole and electron mobilities of 10(-3) cm(2) V-1 s(-1) and 10(-5) cm(2)V(-1) s(-1), respectively. The respectable charge transporting properties of the polymer were consistent with X-ray diffraction measurements that showed close molecular packing in the solid state. The difference in hole and electron mobilities was explained by density functional theory calculations, which showed that the highest occupied molecular orbital was delocalized along the polymer backbone with the lowest unoccupied molecular orbital localized on the bis(thieno3,2-b]thiophene)diketopyrrolopyrrole units. Bulk heterojunction photovoltaic devices with the fullerene acceptor PC70BM were fabricated and delivered a maximum conversion efficiency of 3.3% under AM1.5G illumination. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Using all atom molecular dynamics simulations, we report spontaneous unzipping and strong binding of small interfering RNA (siRNA) on graphene. Our dispersion corrected density functional theory based calculations suggest that nucleosides of RNA have stronger attractive interactions with graphene as compared to DNA residues. These stronger interactions force the double stranded siRNA to spontaneously unzip and bind to the graphene surface. Unzipping always nucleates at one end of the siRNA and propagates to the other end after few base-pairs get unzipped. While both the ends get unzipped, the middle part remains in double stranded form because of torsional constraint. Unzipping probability distributions fitted to single exponential function give unzipping time (tau) of the order of few nanoseconds which decrease exponentially with temperature. From the temperature variation of unzipping time we estimate the energy barrier to unzipping. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4742189]
Resumo:
With a view towards optimizing gas storage and separation in crystalline and disordered nanoporous carbon-based materials, we use ab initio density functional theory calculations to explore the effect of chemical functionalization on gas binding to exposed edges within model carbon nanostructures. We test the geometry, energetics, and charge distribution of in-plane and out-of-plane binding of CO2 and CH4 to model zigzag graphene nanoribbons edge-functionalized with COOH, OH, NH2, H2PO3, NO2, and CH3. Although different choices for the exchange-correlation functional lead to a spread of values for the binding energy, trends across the functional groups are largely preserved for each choice, as are the final orientations of the adsorbed gas molecules. We find binding of CO2 to exceed that of CH4 by roughly a factor of two. However, the two gases follow very similar trends with changes in the attached functional group, despite different molecular symmetries. Our results indicate that the presence of NH2, H2PO3, NO2, and COOH functional groups can significantly enhance gas binding, making the edges potentially viable binding sites in materials with high concentrations of edge carbons. To first order, in-plane binding strength correlates with the larger permanent and induced dipole moments on these groups. Implications for tailoring carbon structures for increased gas uptake and improved CO2/CH4 selectivity are discussed. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4736568]
Resumo:
Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.
Resumo:
In the present work the structural and spectral characteristics of acetazolamide have been studied by methods of infrared, Raman spectroscopy and quantum chemistry. Electrostatic potential surface, optimized geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by density functional theory (DFT) employing B3LYP with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. Based on these results, we have discussed the correlation between the vibrational modes and the structure of the dimers of acetazolamide. The calculated vibrational spectra of three dimers of acetazolamide have been compared with observed spectra, and the assignment of observed bands was carried out using potential energy distribution. The observed spectra agree well with the values computed from the OFT. A comparison of observed and calculated vibrational spectra clearly shows the effect of hydrogen bonding. The frequency shifts observed for the different dimers are in accord with the hydrogen bonding in acetazolamide. Natural bond orbital (NBO) analyses reflect the charge transfer interaction in the individual hydrogen bond units and the stability of different dimers of acetazolamide. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Substitution plays an important role in determining the triplet state reactivity. In this paper, we have studied the effect of chlorine substitution on the triplet state structure and the reactivity of thioxanthone (TX). We have employed time-resolved resonance Raman technique to understand the structure of the lowest triplet excited state of 2-chlorothioxanthone (CTX). The experimental findings have been corroborated with the computational results using density functional theory. Akin to the parent compound (TX), coexistence of two lowest triplet states has been observed in case of CTX, which has been substantiated using resonant probe wavelength dependence study. The relative contribution of 3n-pi* to 3 pi-pi* to the equilibrated triplet state has been found to be more for CTX compared to TX suggesting increase in the triplet state reactivity after the substitution. The above observation has been further supported by the flash photolysis experiments. Copyright (C) 2013 John Wiley & Sons, Ltd.
Resumo:
Two-dimensional (2D) sheets are currently in the spotlight of nanotechnology owing to high-performance device fabrication possibilities. Building a free-standing quantum sheet with controlled morphology is challenging when large planar geometry and ultranarrow thickness are simultaneously concerned. Coalescence of nanowires into large single-crystalline sheet is a promising approach leading to large, molecularly thick 2D sheets with controlled planar morphology. Here we report on a bottom-up approach to fabricate high-quality ultrathin 2D single crystalline sheets with well-defined rectangular morphology via collective coalescence of PbS nanowires. The ultrathin sheets are strictly rectangular with 1.8 nm thickness, 200-250 nm width, and 3-20 mu m length. The sheets show high electrical conductivity at room and cryogenic temperatures upon device fabrication. Density functional theory (DFT) calculations reveal that a single row of delocalized orbitals of a nanowire is gradually converted into several parallel conduction channels upon sheet formation, which enable superior in-plane carrier conduction.
Resumo:
Three new copper-azido complexes Cu-4(N-3)(8)(L-1)(2)](n) (1), Cu-4(N-3)(6)(L-2)(2)(H2O)(2)] (2), and Cu-4(N-3)(6)(L-3)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with N-methylethylenediamine, HL2 and HL3 are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with N,N-diethylethylenediamine and N-ethylethylenediamine respectively] have been synthesized by using 0.5 molar equivalents of the Schiff base ligands with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes contains very similar Cu-4(II) building blocks. While 1 and 3 have overall 1D structures, 2 forms discrete tetranuclear clusters due to blocking of two coordination sites on the tetranuclear cluster by water molecules. Magnetic susceptibility measurements over a wide range of temperatures exhibit the presence of both antiferromagnetic and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional and two different basis sets) have been performed on the complexes 1-3 to provide a qualitative theoretical interpretation of their overall magnetic behavior.
Resumo:
Titanium nitride (TiN), which is widely used for hard coatings, reportedly undergoes a pressure-induced structural phase transformation, from a NaCl to a CsCl structure, at similar to 7 GPa. In this paper, we use first-principles calculations based on density functional theory with a generalized gradient approximation of the exchange correlation energy to determine the structural stability of this transformation. Our results show that the stress required for this structural transformation is substantially lower (by more than an order of magnitude) when it is deviatoric in nature vis-a-vis that under hydrostatic pressure. Local stability of the structure is assessed with phonon dispersion determined at different pressures, and we find that CsCl structure of TiN is expected to distort after the transformation. From the electronic structure calculations, we estimate the electrical conductivity of TiN in the CsCl structure to be about 5 times of that in NaCl structure, which should be observable experimentally. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4798591]