917 resultados para Decolonization of Angola
Resumo:
Sporomorphs and dinoflagellate cysts from site GIK16867 in the northern Angola Basin record the vegetation history of the West African forest during the last 700 ka in relation to changes in salinity and productivity of the eastern Gulf of Guinea. During most cool and cold periods, the Afromontane forest, rather than the open grass-rich dry forest, expanded to lower altitudes partly replacing the lowland rain forest of the borderlands east of the Gulf of Guinea. Except in Stage 3, when oceanic productivity was high during a period of decreased atmospheric circulation, high oceanic productivity is correlated to strong winds. The response of marine productivity in the course of a climatic cycle, however, is earlier than that of wind vigour and makes wind-stress-induced oceanic upwelling in the area less likely. Monsoon variation is well illustrated by the pollen record of increased lowland rain forest that is paired to the dinoflagellate cyst record of decreased salinity forced by increased precipitation and run-off.
Resumo:
Carbon dioxide is one of the most important greenhouse gases which are increasing in atmospheric concentration due to human activities. For using natural CO2 dynamics as a key to understanding the climatic consequences of anthropogenic pCO2 rise, the ocean plays an important role due to its much larger carbon pool compared to the atmosphere. By studying the ratio of stable carbon isotopes in organic matter from marine sediments, it is possible to estimate the partial pressure of CO2 in surface waters during ancient times. The organic compound C37:2 alkenone, whose sole origin is from autotrophic marine algae, was chosen for d13C analysis and its isotopic composition used to reconstruct past PCO2 levels in the surface layer of the eastern Angola Basin for the last 200,000 years. In addition to the variation of ancient concentrations of dissolved CO2 ([CO2(aq)] = ce), the effect of carbon demand which depends on algal growth rate was considered. Here to, carbon isotopic fractionation of C37:2 alkenones (ep) in core-top sediments from the equatorial and the South Atlantic was calibrated against pre-industrial [CO2(aq)] and phosphate concentrations in surface waters. From these data, a variable b = (25 per mil - ep) * ce which reflects intracellular carbon demand was calculated. This variable b correlates with the ambient concentration of seawater phosphate and depends on growth rates. The bulk sediment d15N was used as a proxy parameter for calculating ancient b-values, taking into account that d15N in core-top sediments is correlated to phosphate concentration in modern surface waters. On this basis, the alkenone d13C record of GeoB1016-3 documents a permanent oceanic source for atmospheric carbon dioxide during the last 200,000 years. As a consequence of using d15N derived b-values instead of b = constant, the Angola Basin appears to have been an even stronger CO2 source during glacial periods than at present. Qualitatively similar results were reported by Jasper et al. (1994) for the central Equatorial Pacific. These observations suggest that enhanced productivity of low-latitude upwelling areas during glacial periods is not responsible for the lower CO2 content of the glacial atmosphere.
Resumo:
We have analyzed the stable carbon isotopic composition of the diunsaturated C37 alkenone in 29 surface sediments from the equatorial and South Atlantic Ocean. Our study area covers different oceanographic settings, including sediments from the major upwelling regions off South Africa, the equatorial upwelling, and the oligotrophic western South Atlantic. In order to examine the environmental influences on the sedimentary record the alkenone-based carbon isotopic fractionation (Ep) values were correlated with the overlying surface water concentrations of aqueous CO2 ([CO2(aq)]), phosphate, and nitrate. We found Ep positively correlated with 1/[CO2(aq)] and negatively correlated with [PO43-] and [NO3-]. However, the relationship between Ep and 1/[CO2(aq)] is opposite of what is expected from a [CO2(aq)] controlled, diffusive uptake model. Instead, our findings support the theory of Bidigare et al. (1997, doi:10.1029/96GB03939) that the isotopic fractionation in haptophytes is related to nutrient-limited growth rates. The relatively high variability of the Ep-[PO4] relationship in regions with low surface water nutrient concentrations indicates that here other environmental factors also affect the isotopic signal. These factors might be variations in other growth-limiting resources such as light intensity or micronutrient concentrations.
Resumo:
We reviewed the paleoceanographic application of the carbon isotope composition of planktic foraminifera. Major controls on the distribution of d13C of dissolved CO2 (d13CSCO2) in the modern ocean are photosynthesis-respiration cycle, isotopic fractionation during air-sea exchange, and circulation. The carbon isotope composition of surface waters is not recorded without perturbations by planktic foraminifera. Besides d13CSCO2 of the surrounding seawater, the d13C composition of planktic foraminifera is affected by vital effects, the water depth of calcification and postdepositional dissolution. We compared several high-resolution (>10cm/ka) carbon isotope records from the Southern Ocean, the Benguela upwelling system, and the tropical Atlantic. In the Southern Ocean, carbon isotope values are about 1.2 per mil lower during the LGM and up to 1.7 per mil lower during the last deglaciation, when compared to the Holocene. These depletions might be explained with a combination of a subsurface nutrient enrichment and reduced air-sea exchange due to an increased stratification of surface waters. In the Benguela Upwelling system, waters originating in the south are upwelled. While the deglacial minimum is transferred and recorded in its full extent in the d13C record of Globigerina bulloides, glacial values show only little changes. This might suggest, that the lower glacial d13C values of high-latitude surface waters are not upwelled off Namibia, or that G. bulloides records post-upwelling conditions, when increased seasonal production has already increased surface-water d13C. Synchronous to the d13C depletions in high latitudes, low d13C values were recorded in Globigerinoides sacculifer during the LGM and during the last deglaciation in the nutrient-depleted western equatorial Atlantic. Hence, part of the glacial-interglacial variability presumably transferred from high to low latitudes seems to be related to changes in thermodynamic fractionation. The variability in d13C is lowest in the northernmost core M35003-4 from the eastern Caribbean, implying that the Antarctic Intermediate Water might have acted as a conduit to transfer the deglacial minimum to tropical surface waters.
Resumo:
A high resolution marine pollen record from site GeoB1023, west of the northern Namib desert provides data on vegetation and climate change for the last 21 ka at an average resolution of 185 y. Pollen and spores are mainly delivered to the site by the Cunene river and by surface and mid-tropospheric wind systems. The main pollen source areas are located between 13°S and 21°S, which includes the northern Namib desert and semi-desert, the Angola-northern Namibian highland, and the north-western Kalahari. The pollen spectra reflect environmental changes in the region. The last glacial maximum (LGM) was characterised by colder and more arid conditions than at present, when a vegetation with temperate elements such as Asteroideae, Ericaceae, and Restionaceae grew north of 21°S. At 17.5 ka cal. B.P., an amelioration both in temperature and humidity terminated the LGM but, in the northern Kalahari, mean annual rainfall in the interval 17.5-14.4 ka cal. B.P. was probably 100-150 mm lower than at present (400-500 mm/y). The Late-glacial to early Holocene transition includes two arid periods, i.e. 14.4-12.5 and 10.9-9.3 ka cal. B.P. The last part of the former period may be correlated with the Younger Dryas. The warmest and most humid period in the Holocene occurred between 6.3 and 4.8 ka cal. B.P. During the last 2000 years, human impact, as reflected by indications of deforestation, enhanced burning and overgrazing, progressively intensified.
Resumo:
Palynological investigation of the marine core, GeoB1008-3, from near the mouth of the Congo river (6°35.6'S/10°19.1'E), provides information about the changes in vegetation and climate in West Equatorial Africa during the last 190 ka. The pollen diagram is divided into zones 1-6 which are considered to correspond in time with the marine isotope stages 1-6. Oscillations in temperature and moisture are indicated during the cold stage 6. During stage 5, two cooler periods (5d and 5b) can be shown with an expansion of Podocarpus forests to lower elevations on the expense of lowland rain forest. Extended mangrove swamps existed along the coast in times of high sea level (stages 5 and 1).