976 resultados para Dataset


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hidden Markov model (HMM)-based speech synthesis systems possess several advantages over concatenative synthesis systems. One such advantage is the relative ease with which HMM-based systems are adapted to speakers not present in the training dataset. Speaker adaptation methods used in the field of HMM-based automatic speech recognition (ASR) are adopted for this task. In the case of unsupervised speaker adaptation, previous work has used a supplementary set of acoustic models to estimate the transcription of the adaptation data. This paper first presents an approach to the unsupervised speaker adaptation task for HMM-based speech synthesis models which avoids the need for such supplementary acoustic models. This is achieved by defining a mapping between HMM-based synthesis models and ASR-style models, via a two-pass decision tree construction process. Second, it is shown that this mapping also enables unsupervised adaptation of HMM-based speech synthesis models without the need to perform linguistic analysis of the estimated transcription of the adaptation data. Third, this paper demonstrates how this technique lends itself to the task of unsupervised cross-lingual adaptation of HMM-based speech synthesis models, and explains the advantages of such an approach. Finally, listener evaluations reveal that the proposed unsupervised adaptation methods deliver performance approaching that of supervised adaptation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Image convolution is conventionally approximated by the LTI discrete model. It is well recognized that the higher the sampling rate, the better is the approximation. However sometimes images or 3D data are only available at a lower sampling rate due to physical constraints of the imaging system. In this paper, we model the under-sampled observation as the result of combining convolution and subsampling. Because the wavelet coefficients of piecewise smooth images tend to be sparse and well modelled by tree-like structures, we propose the L0 reweighted-L2 minimization (L0RL2 ) algorithm to solve this problem. This promotes model-based sparsity by minimizing the reweighted L2 norm, which approximates the L0 norm, and by enforcing a tree model over the weights. We test the algorithm on 3 examples: a simple ring, the cameraman image and a 3D microscope dataset; and show that good results can be obtained. © 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study various scalar dissipation rates and their modelling in the context of partially premixed flame are investigated. A DNS dataset of the near field of a turbulent hydrogen lifted jet flame is processed to analyse the mixture fraction and progress variable dissipation rates and their cross dissipation rate at several axial positions. It is found that the classical model for the passive scalar dissipation rate ε{lunate}̃ZZ gives good agreement with the DNS, while models developed based on premixed flames for the reactive scalar dissipation rate ε{lunate}̃cc only qualitatively capture the correct trend. The cross dissipation rate ε{lunate}̃cZ is mostly negative and can be reasonably approximated at downstream positions once ε{lunate}̃ZZ and ε{lunate}̃cc are known, although the sign cannot be determined. This approach gives better results than one employing a constant ratio of turbulent timescale and the scalar covariance c'Z'̃. The statistics of scalar gradients are further examined and lognormal distributions are shown to be very good approximations for the passive scalar and acceptable for the reactive scalar. The correlation between the two gradients increases downstream as the partially premixed flame in the near field evolves ultimately to a diffusion flame in the far field. A bivariate lognormal distribution is tested and found to be a reasonable approximation for the joint PDF of the two scalar gradients. © 2011 The Combustion Institute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel cortex-inspired feed-forward hierarchical object recognition system based on complex wavelets is proposed and tested. Complex wavelets contain three key properties for object representation: shift invariance, which enables the extraction of stable local features; good directional selectivity, which simplifies the determination of image orientations; and limited redundancy, which allows for efficient signal analysis using the multi-resolution decomposition offered by complex wavelets. In this paper, we propose a complete cortex-inspired object recognition system based on complex wavelets. We find that the implementation of the HMAX model for object recognition in [1, 2] is rather over-complete and includes too much redundant information and processing. We have optimized the structure of the model to make it more efficient. Specifically, we have used the Caltech 5 standard dataset to compare with Serre's model in [2] (which employs Gabor filter bands). Results demonstrate that the complex wavelet model achieves a speed improvement of about 4 times over the Serre model and gives comparable recognition performance. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transforms for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a real and challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new haplotype-based approach for inferring local genetic ancestry of individuals in an admixed population. Most existing approaches for local ancestry estimation ignore the latent genetic relatedness between ancestral populations and treat them as independent. In this article, we exploit such information by building an inheritance model that describes both the ancestral populations and the admixed population jointly in a unified framework. Based on an assumption that the common hypothetical founder haplotypes give rise to both the ancestral and the admixed population haplotypes, we employ an infinite hidden Markov model to characterize each ancestral population and further extend it to generate the admixed population. Through an effective utilization of the population structural information under a principled nonparametric Bayesian framework, the resulting model is significantly less sensitive to the choice and the amount of training data for ancestral populations than state-of-the-art algorithms. We also improve the robustness under deviation from common modeling assumptions by incorporating population-specific scale parameters that allow variable recombination rates in different populations. Our method is applicable to an admixed population from an arbitrary number of ancestral populations and also performs competitively in terms of spurious ancestry proportions under a general multiway admixture assumption. We validate the proposed method by simulation under various admixing scenarios and present empirical analysis results from a worldwide-distributed dataset from the Human Genome Diversity Project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last few years have seen considerable progress in pedestrian detection. Recent work has established a combination of oriented gradients and optic flow as effective features although the detection rates are still unsatisfactory for practical use. This paper introduces a new type of motion feature, the co-occurrence flow (CoF). The advance is to capture relative movements of different parts of the entire body, unlike existing motion features which extract internal motion in a local fashion. Through evaluations on the TUD-Brussels pedestrian dataset, we show that our motion feature based on co-occurrence flow contributes to boost the performance of existing methods. © 2011 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores the ignition and subsequent evolution of spray flames in a bluff-body configuration with and without swirl. Ethanol and n-heptane are used to compare the effects of volatility. Ignition is performed by a laser spark. High speed imaging of OH *-chemiluminescence and OH-PLIF collected at 5kHz are used to investigate the behaviour of the flames during the first stages of ignition and the stable flame structure following ignition. Swirl induces a wider and shorter flame, precession, and multiple reaction zones, while the non-swirling flames have a simpler structure. The reaction fronts seem thinner with ethanol than with heptane. The dataset can be used for model validation. © 2012 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MOTIVATION: The integration of multiple datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct-but often complementary-information. We present a Bayesian method for the unsupervised integrative modelling of multiple datasets, which we refer to as MDI (Multiple Dataset Integration). MDI can integrate information from a wide range of different datasets and data types simultaneously (including the ability to model time series data explicitly using Gaussian processes). Each dataset is modelled using a Dirichlet-multinomial allocation (DMA) mixture model, with dependencies between these models captured through parameters that describe the agreement among the datasets. RESULTS: Using a set of six artificially constructed time series datasets, we show that MDI is able to integrate a significant number of datasets simultaneously, and that it successfully captures the underlying structural similarity between the datasets. We also analyse a variety of real Saccharomyces cerevisiae datasets. In the two-dataset case, we show that MDI's performance is comparable with the present state-of-the-art. We then move beyond the capabilities of current approaches and integrate gene expression, chromatin immunoprecipitation-chip and protein-protein interaction data, to identify a set of protein complexes for which genes are co-regulated during the cell cycle. Comparisons to other unsupervised data integration techniques-as well as to non-integrative approaches-demonstrate that MDI is competitive, while also providing information that would be difficult or impossible to extract using other methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter presents a method for vote-based 3D shape recognition and registration, in particular using mean shift on 3D pose votes in the space of direct similarity transformations for the first time. We introduce a new distance between poses in this spacethe SRT distance. It is left-invariant, unlike Euclidean distance, and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast to compute. We demonstrate improved performance over the state of the art in both recognition and registration on a (real and) challenging dataset, by comparing our distance with others in a mean shift framework, as well as with the commonly used Hough voting approach. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matching a new technology to an appropriate market is a major challenge for new technology-based firms (NTBF). Such firms are often advised to target niche-markets where the firms and their technologies can establish themselves relatively free of incumbent competition. However, technologies are diverse in nature and do not benefit from identical strategies. In contrast to many Information and Communication Technology (ICT) innovations which build on an established knowledge base for fairly specific applications, technologies based on emerging science are often generic and so have a number of markets and applications open to them, each carrying considerable technological and market uncertainty. Each of these potential markets is part of a complex and evolving ecosystem from which the venture may have to access significant complementary assets in order to create and sustain commercial value. Based on dataset and case study research on UK advanced material university spin-outs (USO), we find that, contrary to conventional wisdom, the more commercially successful ventures were targeting mainstream markets by working closely with large, established competitors during early development. While niche markets promise protection from incumbent firms, science-based innovations, such as new materials, often require the presence, and participation, of established companies in order to create value. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A strategy to extract turbulence structures from direct numerical simulation (DNS) data is described along with a systematic analysis of geometry and spatial distribution of the educed structures. A DNS dataset of decaying homogeneous isotropic turbulence at Reynolds number Reλ = 141 is considered. A bandpass filtering procedure is shown to be effective in extracting enstrophy and dissipation structures with their smallest scales matching the filter width, L. The geometry of these educed structures is characterized and classified through the use of two non-dimensional quantities, planarity' and filamentarity', obtained using the Minkowski functionals. The planarity increases gradually by a small amount as L is decreased, and its narrow variation suggests a nearly circular cross-section for the educed structures. The filamentarity increases significantly as L decreases demonstrating that the educed structures become progressively more tubular. An analysis of the preferential alignment between the filtered strain and vorticity fields reveals that vortical structures of a given scale L are most likely to align with the largest extensional strain at a scale 3-5 times larger than L. This is consistent with the classical energy cascade picture, in which vortices of a given scale are stretched by and absorb energy from structures of a somewhat larger scale. The spatial distribution of the educed structures shows that the enstrophy structures at the 5η scale (where η is the Kolmogorov scale) are more concentrated near the ones that are 3-5 times larger, which gives further support to the classical picture. Finally, it is shown by analysing the volume fraction of the educed enstrophy structures that there is a tendency for them to cluster around a larger structure or clusters of larger structures. Copyright © 2012 Cambridge University Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of stratification on a series of highly swirling turbulent flames under globally lean conditions (φg=0.75) are investigated using a new high-spatial resolution multi-scalar dataset. This dataset features two key properties: high spatial resolution which approaches the 60 micron optical limit of the measurement system, and a wavelet oversampling methodology which significantly reduces the influence of noise. Furthermore, the very large number of realizations (30,000) acquired in the stratified cases permits statistically significant results to be obtained even after aggressive conditioning is applied. Data are doubly conditioned on equivalence ratio and the degree of stratification across the flame in each instantaneous realization. The influence of stoichiometry is limited by conditioning on the equivalence ratio at the location of peak CO mass fraction, which is shown to be a good surrogate for the location of peak heat release rate, while the stratification is quantified using a linear gradient in equivalence ratio across the instantaneous flame front. This advanced conditioning enables robust comparisons with the baseline lean premixed flame. Species mass fractions of both carbon monoxide and hydrogen are increased in temperature space under stratified conditions. Stratification is also shown to significantly increase thermal gradients, yet the derived three-dimensional flame surface density is shown to be relatively insensitive to stratification. Whilst the presence of instantaneous stratification broadens the curvature distribution relative to the premixed case, the degree of broadening is not significantly influenced by the range of global stratification ratios examined in this study. © 2012 The Combustion Institute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two adaptive numerical modelling techniques have been applied to prediction of fatigue thresholds in Ni-base superalloys. A Bayesian neural network and a neurofuzzy network have been compared, both of which have the ability to automatically adjust the network's complexity to the current dataset. In both cases, despite inevitable data restrictions, threshold values have been modelled with some degree of success. However, it is argued in this paper that the neurofuzzy modelling approach offers real benefits over the use of a classical neural network as the mathematical complexity of the relationships can be restricted to allow for the paucity of data, and the linguistic fuzzy rules produced allow assessment of the model without extensive interrogation and examination using a hypothetical dataset. The additive neurofuzzy network structure means that redundant inputs can be excluded from the model and simple sub-networks produced which represent global output trends. Both of these aspects are important for final verification and validation of the information extracted from the numerical data. In some situations neurofuzzy networks may require less data to produce a stable solution, and may be easier to verify in the light of existing physical understanding because of the production of transparent linguistic rules. © 1999 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present Multi Scale Shape Index (MSSI), a novel feature for 3D object recognition. Inspired by the scale space filtering theory and Shape Index measure proposed by Koenderink & Van Doorn [6], this feature associates different forms of shape, such as umbilics, saddle regions, parabolic regions to a real valued index. This association is useful for representing an object based on its constituent shape forms. We derive closed form scale space equations which computes a characteristic scale at each 3D point in a point cloud without an explicit mesh structure. This characteristic scale is then used to estimate the Shape Index. We quantitatively evaluate the robustness and repeatability of the MSSI feature for varying object scales and changing point cloud density. We also quantify the performance of MSSI for object category recognition on a publicly available dataset. © 2013 Springer-Verlag.