913 resultados para Data processing Computer science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. Results We used KEGG pathways annotations to define groups of genes (or modules), and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Conclusion Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis offers a practical and theoretical evaluations about gossip-epidemic algorithms, comparing those most common in the literature with new proposed algorithms and analyzing their behavior. Tests have been executed using one hundred graphs that has been randomly generated by Large Unstructured NEtwork Simulator (LUNES), a simulation software provided by Parallel and Distributed Simulation Research Group (PADS), of the Department of Computer Science, Università di Bologna and simulated using Advanced RTI System (ARTÌS), based on the High Level Architecture standard. Literatures algorithms have been analyzed and taken as base for new algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente tesi è uno studio sugli strumenti e le tecnologie che caratterizzano l'utilizzo degli open data, in particolare, nello sviluppo di applicazioni web moderne che fanno uso di questo tipo di dati.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current advanced cloud infrastructure management solutions allow scheduling actions for dynamically changing the number of running virtual machines (VMs). This approach, however, does not guarantee that the scheduled number of VMs will properly handle the actual user generated workload, especially if the user utilization patterns will change. We propose using a dynamically generated scaling model for the VMs containing the services of the distributed applications, which is able to react to the variations in the number of application users. We answer the following question: How to dynamically decide how many services of each type are needed in order to handle a larger workload within the same time constraints? We describe a mechanism for dynamically composing the SLAs for controlling the scaling of distributed services by combining data analysis mechanisms with application benchmarking using multiple VM configurations. Based on processing of multiple application benchmarks generated data sets we discover a set of service monitoring metrics able to predict critical Service Level Agreement (SLA) parameters. By combining this set of predictor metrics with a heuristic for selecting the appropriate scaling-out paths for the services of distributed applications, we show how SLA scaling rules can be inferred and then used for controlling the runtime scale-in and scale-out of distributed services. We validate our architecture and models by performing scaling experiments with a distributed application representative for the enterprise class of information systems. We show how dynamically generated SLAs can be successfully used for controlling the management of distributed services scaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For smart cities applications, a key requirement is to disseminate data collected from both scalar and multimedia wireless sensor networks to thousands of end-users. Furthermore, the information must be delivered to non-specialist users in a simple, intuitive and transparent manner. In this context, we present Sensor4Cities, a user-friendly tool that enables data dissemination to large audiences, by using using social networks, or/and web pages. The user can request and receive monitored information by using social networks, e.g., Twitter and Facebook, due to their popularity, user-friendly interfaces and easy dissemination. Additionally, the user can collect or share information from smart cities services, by using web pages, which also include a mobile version for smartphones. Finally, the tool could be configured to periodically monitor the environmental conditions, specific behaviors or abnormal events, and notify users in an asynchronous manner. Sensor4Cities improves the data delivery for individuals or groups of users of smart cities applications and encourages the development of new user-friendly services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an overview of the Mobile Data Challenge (MDC), a large-scale research initiative aimed at generating innovations around smartphone-based research, as well as community-based evaluation of mobile data analysis methodologies. First, we review the Lausanne Data Collection Campaign (LDCC), an initiative to collect unique longitudinal smartphone dataset for the MDC. Then, we introduce the Open and Dedicated Tracks of the MDC, describe the specific datasets used in each of them, discuss the key design and implementation aspects introduced in order to generate privacy-preserving and scientifically relevant mobile data resources for wider use by the research community, and summarize the main research trends found among the 100+ challenge submissions. We finalize by discussing the main lessons learned from the participation of several hundred researchers worldwide in the MDC Tracks.