804 resultados para Data mining and knowledge discovery
Resumo:
VIRTIS, a bordo di Venus Express, è uno spettrometro in grado di operare da 0.25 a 5 µm. Nel periodo 2006-2011 ha ricavato un'enorme mole di dati ma a tutt'oggi le osservazioni al lembo sono poco utilizzate per lo studio delle nubi e delle hazes, specialmente di notte. Gli spettri al lembo a quote mesosferiche sono dominati dalla radianza proveniente dalle nubi e scatterata in direzione dello strumento dalle hazes. L'interpretazione degli spettri al lembo non può quindi prescindere dalla caratterizzazione dell'intera colonna atmosferica. L'obiettivo della tesi è di effettuare un’analisi statistica sulle osservazioni al nadir e proporre una metodologia per ricavare una caratterizzazione delle hazes combinando osservazioni al nadir e al lembo. La caratterizzazione delle nubi è avvenuta su un campione di oltre 3700 osservazioni al nadir. È stato creato un ampio dataset di spettri sintetici modificando, in un modello iniziale, vari parametri di nube quali composizione chimica, numero e dimensione delle particelle. Un processo di fit è stato applicato alle osservazioni per stabilire quale modello potesse descrivere gli spettri osservati. Si è poi effettuata una analisi statistica sui risultati del campione. Si è ricavata una concentrazione di acido solforico molto elevata nelle nubi basse, pari al 96% in massa, che si discosta dal valore generalmente utilizzato del 75%. Si sono poi integrati i risultati al nadir con uno studio mirato su poche osservazioni al lembo, selezionate in modo da intercettare nel punto di tangenza la colonna atmosferica osservata al nadir, per ricavare informazioni sulle hazes. I risultati di un modello Monte Carlo indicano che il numero e le dimensioni delle particelle previste dal modello base devono essere ridotte in maniera significativa. In particolare si osserva un abbassamento della quota massima delle hazes rispetto ad osservazioni diurne.
Resumo:
Coniato negli anni‘90 il termine indica lo scavare tra i dati con chiara metafora del gold mining, ossia la ricerca dell’oro. Oggi è sinonimo di ricerca di informazione in vasti database, ed enfatizza il processo di analisi all’interno dei dati in alternativa all’uso di specifici metodi di analisi. Il data mining è una serie di metodi e tecniche usate per esplorare e analizzare grandi set di dati, in modo da trovare alcune regole sconosciute o nascoste, associazioni o tendenze.
Resumo:
Analisi e applicazione dei processi di data mining al flusso informativo di sistemi real-time. Implementazione e analisi di un algoritmo autoadattivo per la ricerca di frequent patterns su macchine automatiche.
Resumo:
La tesi da me svolta durante questi ultimi sei mesi è stata sviluppata presso i laboratori di ricerca di IMA S.p.a.. IMA (Industria Macchine Automatiche) è una azienda italiana che naque nel 1961 a Bologna ed oggi riveste il ruolo di leader mondiale nella produzione di macchine automatiche per il packaging di medicinali. Vorrei subito mettere in luce che in tale contesto applicativo l’utilizzo di algoritmi di data-mining risulta essere ostico a causa dei due ambienti in cui mi trovo. Il primo è quello delle macchine automatiche che operano con sistemi in tempo reale dato che non presentano a pieno le risorse di cui necessitano tali algoritmi. Il secondo è relativo alla produzione di farmaci in quanto vige una normativa internazionale molto restrittiva che impone il tracciamento di tutti gli eventi trascorsi durante l’impacchettamento ma che non permette la visione al mondo esterno di questi dati sensibili. Emerge immediatamente l’interesse nell’utilizzo di tali informazioni che potrebbero far affiorare degli eventi riconducibili a un problema della macchina o a un qualche tipo di errore al fine di migliorare l’efficacia e l’efficienza dei prodotti IMA. Lo sforzo maggiore per riuscire ad ideare una strategia applicativa è stata nella comprensione ed interpretazione dei messaggi relativi agli aspetti software. Essendo i dati molti, chiusi, e le macchine con scarse risorse per poter applicare a dovere gli algoritmi di data mining ho provveduto ad adottare diversi approcci in diversi contesti applicativi: • Sistema di identificazione automatica di errore al fine di aumentare di diminuire i tempi di correzione di essi. • Modifica di un algoritmo di letteratura per la caratterizzazione della macchina. La trattazione è così strutturata: • Capitolo 1: descrive la macchina automatica IMA Adapta della quale ci sono stati forniti i vari file di log. Essendo lei l’oggetto di analisi per questo lavoro verranno anche riportati quali sono i flussi di informazioni che essa genera. • Capitolo 2: verranno riportati degli screenshoot dei dati in mio possesso al fine di, tramite un’analisi esplorativa, interpretarli e produrre una formulazione di idee/proposte applicabili agli algoritmi di Machine Learning noti in letteratura. • Capitolo 3 (identificazione di errore): in questo capitolo vengono riportati i contesti applicativi da me progettati al fine di implementare una infrastruttura che possa soddisfare il requisito, titolo di questo capitolo. • Capitolo 4 (caratterizzazione della macchina): definirò l’algoritmo utilizzato, FP-Growth, e mostrerò le modifiche effettuate al fine di poterlo impiegare all’interno di macchine automatiche rispettando i limiti stringenti di: tempo di cpu, memoria, operazioni di I/O e soprattutto la non possibilità di aver a disposizione l’intero dataset ma solamente delle sottoporzioni. Inoltre verranno generati dei DataSet per il testing di dell’algoritmo FP-Growth modificato.
Resumo:
Mobile devices are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. To this end, mobile cloud computing (MCC) has been proposed to address the limited computation power, memory, storage, and energy of such devices. An important challenge in MCC is to guarantee seamless discovery of services. To this end, this thesis proposes an architecture that provides user-transparent and low-latency service discovery, as well as automated service selection. Experimental results on a real cloud computing testbed demonstrated that the proposed work outperforms state of-the-art approaches by achieving extremely low discovery delay.
Resumo:
Breast cancer is the most common cancer among women, and tamoxifen is the preferred drug for estrogen receptor-positive breast cancer treatment. Many of these cancers are intrinsically resistant to tamoxifen or acquire resistance during treatment. Consequently, there is an ongoing need for breast cancer drugs that have different molecular targets. Previous work has shown that 8-mer and cyclic 9-mer peptides inhibit breast cancer in mouse and rat models, interacting with an unsolved receptor, while peptides smaller than eight amino acids did not. We show that the use of replica exchange molecular dynamics predicts the structure and dynamics of active peptides, leading to the discovery of smaller peptides with full biological activity. Simulations identified smaller peptide analogues with the same conserved reverse turn demonstrated in the larger peptides. These analogues were synthesized and shown to inhibit estrogen-dependent cell growth in a mouse uterine growth assay, a test showing reliable correlation with human breast cancer inhibition.
Resumo:
Background In Switzerland there are about 150,000 equestrians. Horse related injuries, including head and spinal injuries, are frequently treated at our level I trauma centre. Objectives To analyse injury patterns, protective factors, and risk factors related to horse riding, and to define groups of safer riders and those at greater risk Methods We present a retrospective and a case-control survey at conducted a tertiary trauma centre in Bern, Switzerland. Injured equestrians from July 2000 - June 2006 were retrospectively classified by injury pattern and neurological symptoms. Injured equestrians from July-December 2008 were prospectively collected using a questionnaire with 17 variables. The same questionnaire was applied in non-injured controls. Multiple logistic regression was performed, and combined risk factors were calculated using inference trees. Results Retrospective survey A total of 528 injuries occured in 365 patients. The injury pattern revealed as follows: extremities (32%: upper 17%, lower 15%), head (24%), spine (14%), thorax (9%), face (9%), pelvis (7%) and abdomen (2%). Two injuries were fatal. One case resulted in quadriplegia, one in paraplegia. Case-control survey 61 patients and 102 controls (patients: 72% female, 28% male; controls: 63% female, 37% male) were included. Falls were most frequent (65%), followed by horse kicks (19%) and horse bites (2%). Variables statistically significant for the controls were: Older age (p = 0.015), male gender (p = 0.04) and holding a diploma in horse riding (p = 0.004). Inference trees revealed typical groups less and more likely to suffer injury. Conclusions Experience with riding and having passed a diploma in horse riding seem to be protective factors. Educational levels and injury risk should be graded within an educational level-injury risk index.
Resumo:
To document the rate of self-reported compliance and glaucoma-related knowledge in Swiss patients and to identify risk factors for their poor compliance. This was an observational study, including a total of 200 consecutive patients already under glaucoma medication in two Swiss tertiary glaucoma clinics (Geneva and Bern). Personal characteristics, presence of systemic disease, compliance with glaucoma medication, attitude to the ophthalmologist, and glaucoma-related attitudes were ascertained by means of a predetermined questionnaire with 40 questions. Patients were subsequently assessed for the ability to correctly instil placebo eye drops. Non-compliance with glaucoma medication was defined as omitting more than two doses a week as reported by the patient. Logistic regression was used to evaluate how patient characteristics and knowledge about the disease were related to compliance. Overall, 81% (n = 162) of patients reported to be compliant. Forgetfulness was the most frequently cited reason for non-compliance with dosing regimen (63%). Although 90.5% (n = 181) of patients believed glaucoma medication to be efficient, only 28% (n = 56) could correctly define glaucoma. Factors positively associated with compliance were 'knowledge of glaucoma' [adjusted odds ratio (OR) 4.77 (95% CI 1.36-16.70)] and 'getting help for administration of drops' [OR 2.95 (1.25-6.94)]. These findings indicate that despite the comparatively high compliance rate among glaucoma patients, knowledge of glaucoma remains poor in long-term glaucoma sufferers. Improving knowledge about the disease is important since it is positively associated with compliance in our study.