906 resultados para Data Interpretation, Statistical
Resumo:
Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.
Resumo:
The number of genetic factors associated with common human traits and disease is increasing rapidly, and the general public is utilizing affordable, direct-to-consumer genetic tests. The results of these tests are often in the public domain. A combination of factors has increased the potential for the indirect estimation of an individual's risk for a particular trait. Here we explain the basic principals underlying risk estimation which allowed us to test the ability to make an indirect risk estimation from genetic data by imputing Dr. James Watson's redacted apolipoprotein E gene (APOE) information. The principles underlying risk prediction from genetic data have been well known and applied for many decades, however, the recent increase in genomic knowledge, and advances in mathematical and statistical techniques and computational power, make it relatively easy to make an accurate but indirect estimation of risk. There is a current hazard for indirect risk estimation that is relevant not only to the subject but also to individuals related to the subject; this risk will likely increase as more detailed genomic data and better computational tools become available.
Resumo:
Establish an internet platform where spatially referenced data can be viewed, entered and stored.
Resumo:
Handedness refers to a consistent asymmetry in skill or preferential use between the hands and is related to lateralization within the brain of other functions such as language. Previous twin studies of handedness have yielded inconsistent results resulting from a general lack of statistical power to find significant effects. Here we present analyses from a large international collaborative study of handedness (assessed by writing/drawing or self report) in Australian and Dutch twins and their siblings (54,270 individuals from 25,732 families). Maximum likelihood analyses incorporating the effects of known covariates (sex, year of birth and birth weight) revealed no evidence of hormonal transfer, mirror imaging or twin specific effects. There were also no differences in prevalence between zygosity groups or between twins and their singleton siblings. Consistent with previous meta-analyses, additive genetic effects accounted for about a quarter (23.64%) of the variance (95%CI 20.17, 27.09%) with the remainder accounted for by non-shared environmental influences. The implications of these findings for handedness both as a primary phenotype and as a covariate in linkage and association analyses are discussed.
Resumo:
Standardised time series of fishery catch rates require collations of fishing power data on vessel characteristics. Linear mixed models were used to quantify fishing power trends and study the effect of missing data encountered when relying on commercial logbooks. For this, Australian eastern king prawn (Melicertus plebejus) harvests were analysed with historical (from vessel surveys) and current (from commercial logbooks) vessel data. Between 1989 and 2010, fishing power increased up to 76%. To date, both forward-filling and, alternatively, omitting records with missing vessel information from commercial logbooks produce broadly similar fishing power increases and standardised catch rates, due to the strong influence of years with complete vessel data (16 out of 23 years of data). However, if gaps in vessel information had not originated randomly and skippers from the most efficient vessels were the most diligent at filling in logbooks, considerable errors would be introduced. Also, the buffering effect of complete years would be short lived as years with missing data accumulate. Given ongoing changes in fleet profile with high-catching vessels fishing proportionately more of the fleet’s effort, compliance with logbook completion, or alternatively ongoing vessel gear surveys, is required for generating accurate estimates of fishing power and standardised catch rates.
Resumo:
Patterns of movement in aquatic animals reflect ecologically important behaviours. Cyclical changes in the abiotic environment influence these movements, but when multiple processes occur simultaneously, identifying which is responsible for the observed movement can be complex. Here we used acoustic telemetry and signal processing to define the abiotic processes responsible for movement patterns in freshwater whiprays (Himantura dalyensis). Acoustic transmitters were implanted into the whiprays and their movements detected over 12 months by an array of passive acoustic receivers, deployed throughout 64 km of the Wenlock River, Qld, Australia. The time of an individual's arrival and departure from each receiver detection field was used to estimate whipray location continuously throughout the study. This created a linear-movement-waveform for each whipray and signal processing revealed periodic components within the waveform. Correlation of movement periodograms with those from abiotic processes categorically illustrated that the diel cycle dominated the pattern of whipray movement during the wet season, whereas tidal and lunar cycles dominated during the dry season. The study methodology represents a valuable tool for objectively defining the relationship between abiotic processes and the movement patterns of free-ranging aquatic animals and is particularly expedient when periods of no detection exist within the animal location data.
Resumo:
Abstract of Macbeth, G. M., Broderick, D., Buckworth, R. & Ovenden, J. R. (In press, Feb 2013). Linkage disequilibrium estimation of effective population size with immigrants from divergent populations: a case study on Spanish mackerel (Scomberomorus commerson). G3: Genes, Genomes and Genetics. Estimates of genetic effective population size (Ne) using molecular markers are a potentially useful tool for the management of endangered through to commercial species. But, pitfalls are predicted when the effective size is large, as estimates require large numbers of samples from wild populations for statistical validity. Our simulations showed that linkage disequilibrium estimates of Ne up to 10,000 with finite confidence limits can be achieved with sample sizes around 5000. This was deduced from empirical allele frequencies of seven polymorphic microsatellite loci in a commercially harvested fisheries species, the narrow barred Spanish mackerel (Scomberomorus commerson). As expected, the smallest standard deviation of Ne estimates occurred when low frequency alleles were excluded. Additional simulations indicated that the linkage disequilibrium method was sensitive to small numbers of genotypes from cryptic species or conspecific immigrants. A correspondence analysis algorithm was developed to detect and remove outlier genotypes that could possibly be inadvertently sampled from cryptic species or non-breeding immigrants from genetically separate populations. Simulations demonstrated the value of this approach in Spanish mackerel data. When putative immigrants were removed from the empirical data, 95% of the Ne estimates from jacknife resampling were above 24,000.
Resumo:
The past decade has brought a proliferation of statistical genetic (linkage) analysis techniques, incorporating new methodology and/or improvement of existing methodology in gene mapping, specifically targeted towards the localization of genes underlying complex disorders. Most of these techniques have been implemented in user-friendly programs and made freely available to the genetics community. Although certain packages may be more 'popular' than others, a common question asked by genetic researchers is 'which program is best for me?'. To help researchers answer this question, the following software review aims to summarize the main advantages and disadvantages of the popular GENEHUNTER package.
Resumo:
We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual’s previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag–recapture data and tag–recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).
Resumo:
Contamination of urban streams is a rising topic worldwide, but the assessment and investigation of stormwater induced contamination is limited by the high amount of water quality data needed to obtain reliable results. In this study, stream bed sediments were studied to determine their contamination degree and their applicability in monitoring aquatic metal contamination in urban areas. The interpretation of sedimentary metal concentrations is, however, not straightforward, since the concentrations commonly show spatial and temporal variations as a response to natural processes. The variations of and controls on metal concentrations were examined at different scales to increase the understanding of the usefulness of sediment metal concentrations in detecting anthropogenic metal contamination patterns. The acid extractable concentrations of Zn, Cu, Pb and Cd were determined from the surface sediments and water of small streams in the Helsinki Metropolitan region, southern Finland. The data consists of two datasets: sediment samples from 53 sites located in the catchment of the Stream Gräsanoja and sediment and water samples from 67 independent catchments scattered around the metropolitan region. Moreover, the sediment samples were analyzed for their physical and chemical composition (e.g. total organic carbon, clay-%, Al, Li, Fe, Mn) and the speciation of metals (in the dataset of the Stream Gräsanoja). The metal concentrations revealed that the stream sediments were moderately contaminated and caused no immediate threat to the biota. However, at some sites the sediments appeared to be polluted with Cu or Zn. The metal concentrations increased with increasing intensity of urbanization, but site specific factors, such as point sources, were responsible for the occurrence of the highest metal concentrations. The sediment analyses revealed, thus a need for more detailed studies on the processes and factors that cause the hot spot metal concentrations. The sediment composition and metal speciation analyses indicated that organic matter is a very strong indirect control on metal concentrations, and it should be accounted for when studying anthropogenic metal contamination patterns. The fine-scale spatial and temporal variations of metal concentrations were low enough to allow meaningful interpretation of substantial metal concentration differences between sites. Furthermore, the metal concentrations in the stream bed sediments were correlated with the urbanization of the catchment better than the total metal concentrations in the water phase. These results suggest that stream sediments show true potential for wider use in detecting the spatial differences in metal contamination of urban streams. Consequently, using the sediment approach regional estimates of the stormwater related metal contamination could be obtained fairly cost-effectively, and the stability and reliability of results would be higher compared to analyses of single water samples. Nevertheless, water samples are essential in analysing the dissolved concentrations of metals, momentary discharges from point sources in particular.
Resumo:
Whether a statistician wants to complement a probability model for observed data with a prior distribution and carry out fully probabilistic inference, or base the inference only on the likelihood function, may be a fundamental question in theory, but in practice it may well be of less importance if the likelihood contains much more information than the prior. Maximum likelihood inference can be justified as a Gaussian approximation at the posterior mode, using flat priors. However, in situations where parametric assumptions in standard statistical models would be too rigid, more flexible model formulation, combined with fully probabilistic inference, can be achieved using hierarchical Bayesian parametrization. This work includes five articles, all of which apply probability modeling under various problems involving incomplete observation. Three of the papers apply maximum likelihood estimation and two of them hierarchical Bayesian modeling. Because maximum likelihood may be presented as a special case of Bayesian inference, but not the other way round, in the introductory part of this work we present a framework for probability-based inference using only Bayesian concepts. We also re-derive some results presented in the original articles using the toolbox equipped herein, to show that they are also justifiable under this more general framework. Here the assumption of exchangeability and de Finetti's representation theorem are applied repeatedly for justifying the use of standard parametric probability models with conditionally independent likelihood contributions. It is argued that this same reasoning can be applied also under sampling from a finite population. The main emphasis here is in probability-based inference under incomplete observation due to study design. This is illustrated using a generic two-phase cohort sampling design as an example. The alternative approaches presented for analysis of such a design are full likelihood, which utilizes all observed information, and conditional likelihood, which is restricted to a completely observed set, conditioning on the rule that generated that set. Conditional likelihood inference is also applied for a joint analysis of prevalence and incidence data, a situation subject to both left censoring and left truncation. Other topics covered are model uncertainty and causal inference using posterior predictive distributions. We formulate a non-parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure, and apply the model in the context of optimal sequential treatment regimes, demonstrating that inference based on posterior predictive distributions is feasible also in this case.
Resumo:
Advancements in the analysis techniques have led to a rapid accumulation of biological data in databases. Such data often are in the form of sequences of observations, examples including DNA sequences and amino acid sequences of proteins. The scale and quality of the data give promises of answering various biologically relevant questions in more detail than what has been possible before. For example, one may wish to identify areas in an amino acid sequence, which are important for the function of the corresponding protein, or investigate how characteristics on the level of DNA sequence affect the adaptation of a bacterial species to its environment. Many of the interesting questions are intimately associated with the understanding of the evolutionary relationships among the items under consideration. The aim of this work is to develop novel statistical models and computational techniques to meet with the challenge of deriving meaning from the increasing amounts of data. Our main concern is on modeling the evolutionary relationships based on the observed molecular data. We operate within a Bayesian statistical framework, which allows a probabilistic quantification of the uncertainties related to a particular solution. As the basis of our modeling approach we utilize a partition model, which is used to describe the structure of data by appropriately dividing the data items into clusters of related items. Generalizations and modifications of the partition model are developed and applied to various problems. Large-scale data sets provide also a computational challenge. The models used to describe the data must be realistic enough to capture the essential features of the current modeling task but, at the same time, simple enough to make it possible to carry out the inference in practice. The partition model fulfills these two requirements. The problem-specific features can be taken into account by modifying the prior probability distributions of the model parameters. The computational efficiency stems from the ability to integrate out the parameters of the partition model analytically, which enables the use of efficient stochastic search algorithms.
Resumo:
Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.
Resumo:
The Minimum Description Length (MDL) principle is a general, well-founded theoretical formalization of statistical modeling. The most important notion of MDL is the stochastic complexity, which can be interpreted as the shortest description length of a given sample of data relative to a model class. The exact definition of the stochastic complexity has gone through several evolutionary steps. The latest instantation is based on the so-called Normalized Maximum Likelihood (NML) distribution which has been shown to possess several important theoretical properties. However, the applications of this modern version of the MDL have been quite rare because of computational complexity problems, i.e., for discrete data, the definition of NML involves an exponential sum, and in the case of continuous data, a multi-dimensional integral usually infeasible to evaluate or even approximate accurately. In this doctoral dissertation, we present mathematical techniques for computing NML efficiently for some model families involving discrete data. We also show how these techniques can be used to apply MDL in two practical applications: histogram density estimation and clustering of multi-dimensional data.
Resumo:
Analyzing statistical dependencies is a fundamental problem in all empirical science. Dependencies help us understand causes and effects, create new scientific theories, and invent cures to problems. Nowadays, large amounts of data is available, but efficient computational tools for analyzing the data are missing. In this research, we develop efficient algorithms for a commonly occurring search problem - searching for the statistically most significant dependency rules in binary data. We consider dependency rules of the form X->A or X->not A, where X is a set of positive-valued attributes and A is a single attribute. Such rules describe which factors either increase or decrease the probability of the consequent A. A classical example are genetic and environmental factors, which can either cause or prevent a disease. The emphasis in this research is that the discovered dependencies should be genuine - i.e. they should also hold in future data. This is an important distinction from the traditional association rules, which - in spite of their name and a similar appearance to dependency rules - do not necessarily represent statistical dependencies at all or represent only spurious connections, which occur by chance. Therefore, the principal objective is to search for the rules with statistical significance measures. Another important objective is to search for only non-redundant rules, which express the real causes of dependence, without any occasional extra factors. The extra factors do not add any new information on the dependence, but can only blur it and make it less accurate in future data. The problem is computationally very demanding, because the number of all possible rules increases exponentially with the number of attributes. In addition, neither the statistical dependency nor the statistical significance are monotonic properties, which means that the traditional pruning techniques do not work. As a solution, we first derive the mathematical basis for pruning the search space with any well-behaving statistical significance measures. The mathematical theory is complemented by a new algorithmic invention, which enables an efficient search without any heuristic restrictions. The resulting algorithm can be used to search for both positive and negative dependencies with any commonly used statistical measures, like Fisher's exact test, the chi-squared measure, mutual information, and z scores. According to our experiments, the algorithm is well-scalable, especially with Fisher's exact test. It can easily handle even the densest data sets with 10000-20000 attributes. Still, the results are globally optimal, which is a remarkable improvement over the existing solutions. In practice, this means that the user does not have to worry whether the dependencies hold in future data or if the data still contains better, but undiscovered dependencies.