991 resultados para DOMAIN-II


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurso electrónico. Valencia: BVNP, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurso electrónico. Valencia: BVNP, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurso electrónico. Valencia: BVNP, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurso electrónico. Valencia: BVNP, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurso electrónico. Valencia: BVNP, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurso electrónico. Valencia: BVNP, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microfilm.. Valencia: BV, ca. 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microfilm.. Valencia: BV, ca. 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microfilm.. Valencia: BV, ca. 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microfilm.. Valencia: BV, ca. 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microfilm.. Valencia: BV, ca. 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The experiments presented in this report were designed to specifically examine the role of CD4–major histocompatibility complex (MHC) class II interactions during T cell development in vivo. We have generated transgenic mice expressing class II molecules that cannot interact with CD4 but that are otherwise competent to present peptides to the T cell receptor. MHC class II expression was reconstituted in Aβ gene knock-out mice by injection of a transgenic construct encoding either the wild-type I-Aβb protein or a construct encoding a mutation designed to specifically disrupt binding to the CD4 molecule. We demonstrate that the mutation, EA137 and VA142 in the β2 domain of I-Ab, is sufficient to disrupt CD4–MHC class II interactions in vivo. Furthermore, we show that this interaction is critical for the efficient selection of a complete repertoire of mature CD4+ T helper cells as evidenced by drastically reduced numbers of conventional CD4+ T cells in animals expressing the EA137/VA142 mutant I-Ab and by the failure to positively select the transgenic AND T cell receptor on the mutated I-Ab. These results underscore the importance of the CD4–class II interaction in the development of mature peripheral CD4+ T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several classes of voltage-gated Ca2+ channels (VGCCs) are inhibited by G proteins activated by receptors for neurotransmitters and neuromodulatory peptides. Evidence has accumulated to indicate that for non-L-type Ca2+ channels the executing arm of the activated G protein is its βγ dimer (Gβγ). We report below the existence of two Gβγ-binding sites on the A-, B-, and E-type α1 subunits that form non-L-type Ca2+ channels. One, reported previously, is in loop 1 connecting transmembrane domains I and II. The second is located approximately in the middle of the ca. 600-aa-long C-terminal tails. Both Gβγ-binding regions also bind the Ca2+ channel β subunit (CCβ), which, when overexpressed, interferes with inhibition by activated G proteins. Replacement in α1E of loop 1 with that of the G protein-insensitive and Gβγ-binding-negative loop 1 of α1C did not abolish inhibition by G proteins, but the exchange of the α1E C terminus with that of α1C did. This and properties of α1E C-terminal truncations indicated that the Gβγ-binding site mediating the inhibition of Ca2+ channel activity is the one in the C terminus. Binding of Gβγ to this site was inhibited by an α1-binding domain of CCβ, thus providing an explanation for the functional antagonism existing between CCβ and G protein inhibition. The data do not support proposals that Gβγ inhibits α1 function by interacting with the site located in the loop I–II linker. These results define the molecular mechanism by which presynaptic G protein-coupled receptors inhibit neurotransmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin D, the major steroid hormone that controls mineral ion homeostasis, exerts its actions through the vitamin D receptor (VDR). The VDR is expressed in many tissues, including several tissues not thought to play a role in mineral metabolism. Studies in kindreds with VDR mutations (vitamin D-dependent rickets type II, VDDR II) have demonstrated hypocalcemia, hyperparathyroidism, rickets, and osteomalacia. Alopecia, which is not a feature of vitamin D deficiency, is seen in some kindreds. We have generated a mouse model of VDDR II by targeted ablation of the second zinc finger of the VDR DNA-binding domain. Despite known expression of the VDR in fetal life, homozygous mice are phenotypically normal at birth and demonstrate normal survival at least until 6 months. They become hypocalcemic at 21 days of age, at which time their parathyroid hormone (PTH) levels begin to rise. Hyperparathyroidism is accompanied by an increase in the size of the parathyroid gland as well as an increase in PTH mRNA levels. Rickets and osteomalacia are seen by day 35; however, as early as day 15, there is an expansion in the zone of hypertrophic chondrocytes in the growth plate. In contrast to animals made vitamin D deficient by dietary means, and like some patients with VDDR II, these mice develop progressive alopecia from the age of 4 weeks.