908 resultados para DIABETES IN RATS
Resumo:
The expression of uroplakins, the tissue-specific and differentiation- dependent membrane proteins of the urothelium, was analyzed immunohistochemically in N butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-treated rats and mice during bladder carcinogenesis. Male Fischer 344 rats were treated with 0.05% BBN in the drinking water for 10 wk and were cuthanatized at week 20 of the experiment. BBN was administered to male B6D2F1 mice; it was either provided at a rate of 0.05% in the drinking water (for 26 wk) or 5 mg BBN was administered by intragastric gavage twice weekly for 10 wk, followed by 20 wk without treatment. In rats, BBN-induced, noninvasive, low grade, papillary, transitional cell carcinoma (TCC) showed decreased uroplakin-staining of cells lining the lumen but showed increased expression in some nonluminal cells. In mice, nonpapillary, high-grade dysplasia, carcinoma in situ, and invasive carcinoma were induced. There was a marked decrease in the number of uroplakin-positive cells lining the lumen and in nonluminal cells. This occurred in normal-appearing urothelium in BBN-treated mice and in dysplasic urothelium, in carcinoma in situ, and in invasive TCC. The percentage of uroplakin-positive nonluminal cells was higher in control mice than in rats, but it was lower in the mouse than in the rat after BBN treatment. Uroplakin expression was disorderly and focal in BBN-treated urothelium in both species. These results indicate that BBN treatment changed the expression of uroplakins during bladder carcinogenesis, with differences in rats and mice being related to degree of tumor differentiation.
Resumo:
We investigated the effect of a meal feeding schedule (MFS) on food intake, hepatic glycogen synthesis, hepatic capacity to produce glucose and glycemia in rats. The MFS comprised free access to food for a 2-hour period daily at a fixed mealtime (8.00-10.00 a.m.) for 13 days. The control group was composed of rats with free access to food from day 1 to 12, which were then starved for 22 h, refed with a single meal at 8.00-10.00 a.m. and starved again for another 22 h. All experiments were performed at the meal time (i.e. 8.00 a.m.). The MFS group exhibited increased food intake and higher glycogen synthase activity. Since gluconeogenesis from L-glutamine or L-alanine was not affected by MFS, we conclude that the increased food intake and higher glycogen synthase activity contributed to the better glucose maintenance showed by MFS rats at the fixed meal time. Copyright © 2001 National Science Council, ROC and S. Karger AG, Basel.
Resumo:
The higher concentration during exercise at which lactate entry in blood equals its removal is known as 'maximal lactate steady state' (MLSS) and is considered an important indicator of endurance exercise capacity. The aim of the present study was to determine MLSS in rats during swimming exercise. Adult male Wistar rats, which were adapted to water for 3 weeks, were used. After this, the animals were separated at random into groups and submitted once a week to swimming sessions of 20 min, supporting loads of 5, 6, 7, 8, 9 or 10% of body wt. for 6 consecutive weeks. Blood lactate was determined every 5 min to find the MLSS. Sedentary animals presented MLSS with overloads of 5 and 6% at 5.5 mmol/l blood lactate. There was a significant (P < 0.05) increase in blood lactate with the other loads. In another set of experiments, rats of the same strain, sex and age were submitted daily to 60 min of swimming with an 8% body wt. overload, 5 days/week, for 9 weeks. The rats were then submitted to a swimming session of 20 min with an 8% body wt. overload and blood lactate was determined before the beginning of the session and after 10 and 20 min of exercise. Sedentary rats submitted to the same acute exercise protocol were used as a control. Physical training did not alter the MLSS value (P < 0.05) but shifted it to a higher exercise intensity (8% body wt. overload). Taken together these results indicate that MLSS measured in rats in the conditions of the present study was reproducible and seemed to be independent of the physical condition of the animals. © 2001 Elsevier B.V. All rights reserved.
Resumo:
Cyclosporin A is a selective immunosuppressant, used in organ transplants to prevent graft rejection. Cyclosporin A can cause various side effects including gingival overgrowth. The aim of this work was to evaluate gingival overgrowth of rats treated daily with 10 mg/kg body weight of Cyclosporin A for 60 days, as well as the regression after the interruption of treatment. All rats treated with Cyclosporin A developed gingival overgrowth, with increased thickness of the epithelium, height and width of the connective tissue. The density of fibroblasts and collagen fibers also increased. Five to 90 days after the interruption of treatment with Cyclosporin A, there was a progressive reduction of the gingival volume and of collagen fibers and fibroblast densities. The reduction was more pronounced in the initial periods and after 90 days did not return to the normal values.
Resumo:
It has previously been shown that, while cyclosporin A (CsA) and nifedipine both cause gingival overgrowth in the rat. the combined use of these drugs increases the severity of overgrowth. The aim of this study was to describe the histometry and densities of fibroblasts, collagen fibers and vessels in the gingival tissue of rats that were treated with CsA and nifedipine, either alone or in combination. Rats were treated for 60 days with a daily subcutaneous injection of 10 mg/kg body weight of CsA and/or with 50 mg/kg body weight of nifedipine added to the chow. The results confirmed that CsA causes a more severe overgrowth than nifedipine, and that the combined use of these drugs increases the overgrowth severity. All the rat groups that were studied showed that, as the severity of overgrowth increased, there was a parallel increase in fibroblasts and collagen, and a decrease in vessel content. Therefore, independently of whether the gingival overgrowth was caused by CsA alone, nifedipine alone, or both treatments in combination, the fibroblast and collagen density increased in parallel with the severity of the overgrowth. © Blackwell Munksgaard, 2002.
Resumo:
Neonatal administration of monosodium glutamate (MSG) in rats causes definite neuroendocrine disturbances which lead to alterations in many organ systems. The possibility that MSG could affect tooth and salivary gland physiology was examined in this paper. Male and female pups were injected subcutaneously with MSG (4 mg/g BW) once a day at the 2nd, 4th, 6th, 8th and 10th day after birth. Control animals were injected with saline, following the same schedule. Lower incisor eruption was determined between the 4th and the 10th postnatal days, and the eruption rate was measured between the 43rd and the 67th days of age. Pilocarpine-stimulated salivary flow was measured at 3 months of age; protein and amylase contents were thereby determined. The animals treated with MSG showed significant reductions in the salivary flow (males, -27%; females, -40%) and in the weight of submandibular glands (about -12%). Body weight reduction was only about 7% for males, and did not vary in females. Saliva of MSG-treated rats had increased concentrations of total proteins and amylase activity. The eruption of lower incisors occurred earlier in MSG-treated rats than in the control group, but on the other hand the eruption rate was significantly slowed down. The incisor microhardness was found to be lower than that of control rats. Our results show that neonatal MSG treatment causes well-defined oral disturbances in adulthood in rats, including salivary flow reduction, which coexisted with unaltered protein synthesis, and disturbances of dental mineralization and eruption. These data support the view that some MSG-sensitive hypothalamic nuclei have an important modulatory effect on the factors which determine caries susceptibility.
Resumo:
Present work investigated the effect of prolonged administration of salmon calcitonin, a hormone secreted by parafollicular cells from thyroid, on behavioural parameters of rats. Animals received calcitonin sc, 100 mUI/100 g of body weight, three times a week, during 50 days. Behaviour was assessed utilizing an Open Field, Elevated Plus-Maze and Hole Board apparatus. Calcitonin treatment in rats seems to modify open field and elevated plus maze behaviour, suggesting emotionality and anxiety state alterations of the animals. These conditions can be provoked due to the direct calcitonin action on its receptors, even though we do not exclude an action mediated by tissue calcium level alterations.
Resumo:
Background: Cyclosporin A and nifedipine cause gingival overgrowth in rat, and the combined use of these drugs increases the overgrowth severity. Objective: The purpose of this study was to compare gingival overgrowth of rats of differents ages treated with cyclosporin A and nifedipine alone or given concurrently. Materials and methods: Rats 15, 30, 60 and 90 d old were treated with 10 mg/kg body weight of cyclosporin A and/or 50 mg/kg body weight of nifedipine in the chow. Results: Young rats showed evident gingival overgrowth with nifedipine, cyclosporin A, and cyclosporin A and nifedipine given concurrently. Adult rats did not show significant gingival alterations when treated with cyclosporin A and nifedipine alone. Nevertheless evident gingival overgrowth with alterations of the epithelium and connective tissue were observed when treated simultaneously with cyclosporin A and nifedipine. Conclusion: These results suggest that the combined effects of cyclosporin A and nifedipine on gingival overgrowth in rat is not age dependent.
Resumo:
Protein malnutrition leads to functional impairment in several organs, which is not fully restored with nutritional recovery. Little is known about the role of oxidative stress in the genesis of these alterations. This study was designed to assess the sensitivity of blood oxidative stress biomarkers to a dietary protein restriction. Male Wistar rats were divided into two groups, according to the diet fed from weaning (21 days) to 60 day old: normal protein (17% protein) and low protein (6% protein). Serum protein, albumin, free fatty acid and liver glycogen and lipids were evaluated to assess the nutritional status. Blood glutathione reductase (GR) and catalase (CAT) activities, plasma total sulfhydryl groups concentration (TSG) as well as plasma thiobarbituric acid reactive substances (TBARs) and reactive carbonyl derivatives (RCD) were measured as biomarkers of the antioxidant system and oxidative damage, respectively. The glucose metabolism in soleus muscle was also evaluated as an index of stress severity imposed to muscular mass by protein malnutrition. No difference was observed in muscle glucose metabolism or plasma RCD concentration between both groups. However, our results showed that the low protein group had higher plasma TBARs (62%) concentration and lower TSG (44%) concentration than control group, indicating increased reactive oxygen species production in low protein group. The enhancement of erythrocyte GR (29%) and CAT (28%) activities in this group also suggest an adaptation to the stress generated by the protein deficiency. Taken together, the results presented here show that the biomarkers used were able to reflect the oxidative stress level induced by this specific protein deficient diet.
Resumo:
Objective: The objective of the present investigation was to assess the histological effects of different wavelengths and intensities on the healing process of cutaneous wounds. Background Data: Tissue repair is a dynamic interactive process which involves mediators, cells and extra-cellular matrix. Several reports on the use of laser therapy have shown that the healing process is positively affected when the correct parameters are used. Methods: Eighteen standardized wounds were surgically created on the dorsum of male and female Wistar rats, which were subsequently divided into two experimental groups according to wavelength used λ.670 or λ685 nm) for lasertherapy (LLLT). Each group was divided into three subgroups of three animals according to the intensity of the applied irradiation (2,15, or 25 mW). Twelve animals were used as entreated controls and were not irradiated. The irradiation was carried out during seven consecutive days. The animals were sacrificed eight days after surgery. The specimens were removed, kept in 4% formaldehyde for 24 h, routinely prepared to wax, stained with H&E, and analyzed under light microscopy. Results: For both groups, light microscopy showed a substitution repair process; however, when LLLT was used, a positive biomodulatory effect was detectable, chiefly associated with shorter wavelength and low intensity. Conclusions: The results of the present study indicate that LLLT improved cutaneous wound repair and that the effect is a result of an inversely proportional relationship between wavelength and intensity, with treatment more effective when combining higher intensity with short wavelength or lower intensity with higher wavelength.
Resumo:
Propolis (bee glue) is one of the major hive products of bees and is rich in flavonoids, which are known for their antioxidant activities. The aim of this study was to evaluate the hepatoprotective effects of the ethanolic extract of propolis (EEP) against experimental carbon tetrachloride (CCl 4)-induced liver toxicity in rats by means of biochemical indices. The animals were divided into 4 groups: GI= received mineral oil; GII= CCl 4(4mL/kg; Lp., single dose) treated; GIII= CCl4 (4mL/kg; i.p., single dose) treatment followed by ethanolic extract of propolis (100mg/kg) for gavage from the species Tetragonisca angustula, daily for 3 days and GIV= CCl4 (4mL/kg; i.p., single dose) treatment followed by ethanolic extract of propolis (100mg/kg) for gavage from the species Nannotrigonea testaceicornes, daily, for 3 days. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cholesterol and triacylglycerols were estimated after 3 days. CCl 4 caused a maximum increase (p<0,01) above biochemical parameters. As compared to CCl4 group (GII), the EEP (GIII and GIV) showed reduction in cholesterol, triacylglycerol, ALT, AST and alkaline phosphatase activity in the serum. In conclusion, these data indicate that EEP improved the dyslipidaemia, moreover, significantly attenuated increases in serum ALT and AST activities in rats with liver damage induced by carbon tetrachloride.
Resumo:
Proteinase-activated receptor-2 (PAR2) is a G-protein-coupled receptor that mediates cellular responses to extracellular proteinases. Since PAR2 is expressed by oral epithelial cells, osteoblasts, and gingival fibroblasts, where its activation releases interleukin-8, we hypothesized that PAR2 activation may participate in periodontal disease in vivo. We investigated the role of PAR2 activation in periodontal disease in rats. Radiographic and enzymatic (myeloperoxidase) analysis revealed that topical application of PAR2 agonist causes periodontitis but also exacerbates existing periodontitis, leading to significant alveolar bone loss and gingival granulocyte infiltration. Inhibition of matrix metalloproteinase (MMP) and cyclo-oxygenase (COX) decreased PAR2 agonist-induced periodontitis. More specifically, the overexpression of COX-1, COX-2, MMP-2, and MMP-9 in gingival tissues suggests that they are involved in PAR 2-induced periodontitis. In conclusion, PAR2 agonist causes periodontitis in rats through a mechanism involving prostaglandin release and MMP activation. Inhibition of PAR2 may represent a novel approach to modulate host response in periodontitis.
Resumo:
Objective: This study determined the effects of adding monosodium glutamate (MSG) to a standard diet and a fiber-enriched diet on glucose metabolism, lipid profile, and oxidative stress in rats. Methods: Male Wistar rats (65 ± 5 g, n = 8) were fed a standard diet (control), a standard diet supplemented with 100 g of MSG per kilogram of rat body weight, a diet rich in fiber, or a diet rich in fiber supplemented with 100 g of MSG per kilogram of body weight. After 45 d of treatment, sera were analyzed for concentrations of insulin, leptin, glucose, triacylglycerol, lipid hydroperoxide, and total antioxidant substances. A homeostasis model assessment index was estimated to characterize insulin resistance. Results: Voluntary food intake was higher and feed efficiency was lower in animals fed the standard diet supplemented with MSG than in those fed the control, fiber-enriched, or fiber- and MSG-enriched diet. The MSG group had metabolic dysfunction characterized by increased levels of glucose, triacylglycerol, insulin, leptin, and homeostasis model assessment index. The adverse effects of MSG were related to an imbalance between the oxidant and antioxidant systems. The MSG group had increased levels of lipid hydroperoxide and decreased levels of total antioxidant substances. Levels of triacylglycerol and lipid hydroperoxide were decreased in rats fed the fiber-enriched and fiber- and MSG-enriched diets, whereas levels of total antioxidant substances were increased in these animals. Conclusions: MSG added to a standard diet increased food intake. Overfeeding induced metabolic disorders associated with oxidative stress in the absence of obesity. The fiber-enriched diet prevented changes in glucose, insulin, leptin, and triacylglycerol levels that were seen in the MSG group. Because the deleterious effects of MSG, i.e., induced overfeeding, were not seen in the animals fed the fiber-enriched diets, it can be concluded that fiber supplementation is beneficial by discouraging overfeeding and improving oxidative stress that is induced by an MSG diet. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Background: Cyclosporin (CsA) and tacrolimus (FK-506) are immunosuppressive drugs that specifically inhibit T-cell activation via calcineurin inhibition. Gingival overgrowth is a common side effect following the administration of CsA. The severity of gingival overgrowth seen in patients taking FK-506 is less than that observed with CsA. Little is known about the involvement of saliva in drug-induced gingival overgrowth. The purpose of this study was to investigate the salivary contents of tumor growth factor β1 (TGF-β1), epidermal growth factor (EGF), and interleukin-6 (IL-6) as well as the hystometry of gingival tissue obtained from rats treated with either FK-506 or CsA. Methods: For 30 or 60 days rats received daily subcutaneous injection doses of either CsA or FK-506 (10 mg/kg). The concentrations of TGF-β1, EGF, and IL-6 in saliva were determined by enzyme-linked immunosorbent assay, and after histological processing, the oral epithelium and connective tissue were assessed at the region of the lower first molars. Results: The levels of TGF-β1, EGF, and IL-6 in saliva were not significantly altered by any of the treatments after 30 days. After 60 days of treatment with CsA, gingival overgrowth and significant increase in salivary TGF-β1, EGF, and IL-6 concentrations were observed; no statistically significant changes were induced by FK-506. Conclusion: Within the limits of this experimental study, it can be concluded that CsA, but not FK-506, induced gingival overgrowth associated with an increase of the salivary levels of the cytokines TGF-β1, EGF, and IL-6.
Resumo:
The objective of this study was to evaluate the role of retinoic acid in experimental postinfarction myocardial remodeling. Wistar rats were subjected to myocardial infarction (MI) and treated with retinoic acid (RA), 0.3 mg/(kg · d) (MI-RA, n = 29), or fed a control diet (MI, n = 34). After 6 mo, the surviving rats (MI-RA = 18 and MI = 22) underwent echocardiograms, and isolated hearts were tested for function in vitro. The cross-sectional area of the myocyte (CSA) and interstitial collagen fraction (IC) were measured in a cross section of the heart stained by hematoxylin-eosin and picrosirius red, respectively. The CSA was smaller in the MI-RA group [229 (220, 234) μm 2] [medians (lower quartile, upper quartile)] than in the MI group [238 (232, 241) μm 2] (P = 0.01) and IC was smaller in the MI-RA group [2.4 (1.7, 3.1)%] than in the MI group [3.5 (2.6, 3.9)%] (P = 0.05). The infarct size did not differ between the groups [MI = 44.6 (40.8, 48.4)%, MI-RA = 45 (38.6, 47.2)%]. Maximum rate of rise of left ventricular pressure (+dp/dt) was greater in the MI-RA group (2645 ± 886 mm Hg/s) than in the MI group (2081 ± 617 mm Hg/s) (P = 0.05). The other variables tested did not differ between groups. Retinoic acid supplementation of rats for 6 mo attenuates the ventricular remodeling process after MI. © 2005 American Society for Nutrition.