993 resultados para DENTAL COMPOSITES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared (NIR) light emitting diodes employing composites of an IR fluorescent dye, CdSe/CdScore/shell semiconductor quantum dots and poly( N-vinylcarbazole) (PVK) have been demonstrated. The device, with a configuration of indium-tin-oxide (ITO)//PEDOT:PSS//PVK:NIR Dye:CdSe/CdS//Al, had a turn-on voltage of 7 V, emitted the NIR light with a maximum at 890 nm and the irradiance intensity of 96 mu W. The electroluminescence efficiency of 0.02% was achieved at a current density of 13 mA cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To improve the mechanical properties of the composites of poly(lactide-co-glycolide) (PLGA, LA/GA = 80/20) and the carbonate hydroxyapatite (CHAP) particles, the rice-form or claviform CHAP particles with 30-40 nm in diameter and 100-200 nm in length were prepared by precipitation method. The uncalcined CHAP particles have a coarse surface with a lot of global protuberances, which could be in favor of the interaction of the matrix polymer to the CHAP particles. The nanocomposites of PLGA and surface grafted CHAP particles (g-CHAP) were prepared by solution mixing method. The structure and properties of the composites were subsequently investigated by the emission scanning electron microscopy, the tensile strength testing, and the cell culture. When the contents of g-CHAP were in the range of 2-15 wt %, the PLGA/g-CHAP nanocomposites exhibited an improved elongation at break and tensile strength. At the 2 wt % content of g-CHAP, the fracture strain was increased to 20%) from 4-5% for neat PLGA samples. Especially at g-CHAP content of 15 wt %, the tensile strength of PLGA/g-CHAP composite was about 20% higher than that of neat PLGA materials. The tensile moduli of composites were increased with the increasing of filler contents, so that the g-CHAP particles had both reinforcing and toughening effects on the PLGA composites. The results of biocompatibility test showed that the higher g-CHAP contents in PLGA composite facilitated the adhesion and proliferation properties of osteoblasts on the PLGA/g-CHAP composite film.