845 resultados para DEMAND FOR PHDS IN STATISTICS
Resumo:
The background error covariance matrix, B, is often used in variational data assimilation for numerical weather prediction as a static and hence poor approximation to the fully dynamic forecast error covariance matrix, Pf. In this paper the concept of an Ensemble Reduced Rank Kalman Filter (EnRRKF) is outlined. In the EnRRKF the forecast error statistics in a subspace defined by an ensemble of states forecast by the dynamic model are found. These statistics are merged in a formal way with the static statistics, which apply in the remainder of the space. The combined statistics may then be used in a variational data assimilation setting. It is hoped that the nonlinear error growth of small-scale weather systems will be accurately captured by the EnRRKF, to produce accurate analyses and ultimately improved forecasts of extreme events.
Resumo:
To achieve CO2 emissions reductions the UK Building Regulations require developers of new residential buildings to calculate expected CO2 emissions arising from their energy consumption using a methodology such as Standard Assessment Procedure (SAP 2005) or, more recently SAP 2009. SAP encompasses all domestic heat consumption and a limited proportion of the electricity consumption. However, these calculations are rarely verified with real energy consumption and related CO2 emissions. This paper presents the results of an analysis based on weekly head demand data for more than 200 individual flats. The data is collected from recently built residential development connected to a district heating network. A methodology for separating out the domestic hot water use (DHW) and space heating demand (SH) has been developed and compares measured values to the demand calculated using SAP 2005 and 2009 methodologies. The analysis shows also the variance in DHW and SH consumption between both size of the flats and tenure (privately owned or housing association). Evaluation of the space heating consumption includes also an estimation of the heating degree day (HDD) base temperature for each block of flats and its comparison to the average base temperature calculated using the SAP 2005 methodology.
Resumo:
The article presents an essay that deals with the study conducted by Donald MacKenzie and the case studies comparing the use of population statistics in France and Great Britain in the periods of 1825 and 1885. It analyzes Donald MacKenzie's study on the ways professional and political commitments informed the choice of statistical indexes in the British statistical community. Furthermore, the author is interested in knowing how this influenced the development of mathematical statistics in Great Britain. The author concludes that the differences in the debates over population statistics are accounted to the differences in the social and epistemological logics of population statistics.
Resumo:
One of the most common Demand Side Management programs consists of Time-of-Use (TOU) tariffs, where consumers are charged differently depending on the time of the day when they make use of energy services. This paper assesses the impacts of TOU tariffs on a dataset of residential users from the Province of Trento in Northern Italy in terms of changes in electricity demand, price savings, peak load shifting and peak electricity demand at substation level. Findings highlight that TOU tariffs bring about higher average electricity consumption and lower payments by consumers. A significant level of load shifting takes place for morning peaks. However, issues with evening peaks are not resolved. Finally, TOU tariffs lead to increases in electricity demand for substations at peak time.
Resumo:
An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km. The 15-year integrations were forced from reanalyses and observed sea surface temperature and sea ice (global model from sea surface only). The observational reference is based on 6400 rain gauge records (10–50 stations per grid box). Evaluation statistics encompass mean precipitation, wet-day frequency, precipitation intensity, and quantiles of the frequency distribution. For mean precipitation, the models reproduce the characteristics of the annual cycle and the spatial distribution. The domain mean bias varies between −23% and +3% in winter and between −27% and −5% in summer. Larger errors are found for other statistics. In summer, all models underestimate precipitation intensity (by 16–42%) and there is a too low frequency of heavy events. This bias reflects too dry summer mean conditions in three of the models, while it is partly compensated by too many low-intensity events in the other two models. Similar intermodel differences are found for other European subregions. Interestingly, the model errors are very similar between the two models with the same dynamical core (but different parameterizations) and they differ considerably between the two models with similar parameterizations (but different dynamics). Despite considerable biases, the models reproduce prominent mesoscale features of heavy precipitation, which is a promising result for their use in climate change downscaling over complex topography.
Resumo:
For decades regulators in the energy sector have focused on facilitating the maximisation of energy supply in order to meet demand through liberalisation and removal of market barriers. The debate on climate change has emphasised a new type of risk in the balance between energy demand and supply: excessively high energy demand brings about significantly negative environmental and economic impacts. This is because if a vast number of users is consuming electricity at the same time, energy suppliers have to activate dirty old power plants with higher greenhouse gas emissions and higher system costs. The creation of a Europe-wide electricity market requires a systematic investigation into the risk of aggregate peak demand. This paper draws on the e-Living Time-Use Survey database to assess the risk of aggregate peak residential electricity demand for European energy markets. Findings highlight in which countries and for what activities the risk of aggregate peak demand is greater. The discussion highlights which approaches energy regulators have started considering to convince users about the risks of consuming too much energy during peak times. These include ‘nudging’ approaches such as the roll-out of smart meters, incentives for shifting the timing of energy consumption, differentiated time-of-use tariffs, regulatory financial incentives and consumption data sharing at the community level.
Resumo:
The recent policy discussion in the UK on the economic case for demand response (DR) calls for a reflection on available evidence regarding its costs and benefits. Existing studies tend to consider the size of investments and returns of certain forms of DR in isolation and do not consider economic welfare effects. From review of existing studies, policy documents, and some simple modelling of benefits of DR in providing reserve for unforeseen events, we demonstrate that the economic case for DR in UK electricity markets is positive. Consideration of economic welfare gains is provided.
Resumo:
Although it may be wholly inappropriate to generalize, the most important resource available to a subsistence household is the total amount of time that its members have available to spend in productive enterprises. In this context, services that minimize the time that it takes to perform productive activities are valuable to the household. Consequently the household is willing to relinquish quantities of other resources in exchange for quantities of the time-saving service. These simple observations motivate a search for the values that subsistence households place on time-saving services. This search is especially important when it is realized that extension services promote productivity, enhance the surplus-generating potential of the household and can, as a consequence, promote immersion into markets that are currently constrained by thinness and instability. In this capacity, extension visitation has the potential to overcome one of the principal impediments to economic development, namely lack of density of market participation. In this article, we consider this issue in the context of a rich data set on milk-market participation by small-holder dairy producers in the Ethiopian highlands.
Resumo:
This article reports the results of an experiment that examined how demand aggregators can discipline vertically-integrated firms - generator and distributor-retailer holdings-, which have a high share in wholesale electricity market with uniform price double auction (UPDA). We initially develop a treatment where holding members redistribute the profit based on the imposition of supra-competitive prices, in equal proportions (50%-50%). Subsequently, we introduce a vertical disintegration (unbundling) treatment with holding-s information sharing, where profits are distributed according to market outcomes. Finally, a third treatment is performed to introduce two active demand aggregators, with flexible interruptible loads in real time. We found that the introduction of responsive demand aggregators neutralizes the power market and increases market efficiency, even beyond what is achieved through vertical disintegration.