972 resultados para Crushing machinery
Resumo:
A dynamic model for the ice-induced vibration (IIV) of structures is developed in the present study. Ice properties have been taken into account, such as the discrete failure, the dependence of the crushing strength on the ice velocity, and the randomness of ice failure. The most important prediction of the model is to capture the resonant frequency lock-in, which is analog to that in the vortex-induced vibration. Based on the model, the mechanism of resonant IIV is discussed. It is found that the dependence of the ice crushing strength on the ice velocity plays an important role in the resonant frequency lock-in of IIV. In addition, an intermittent stochastic resonant vibration is simulated from the model. These predictions are supported by the laboratory and field observations reported. The present model is more productive than the previous models of IIV.
Resumo:
Life is the result of the execution of molecular programs: like how an embryo is fated to become a human or a whale, or how a person’s appearance is inherited from their parents, many biological phenomena are governed by genetic programs written in DNA molecules. At the core of such programs is the highly reliable base pairing interaction between nucleic acids. DNA nanotechnology exploits the programming power of DNA to build artificial nanostructures, molecular computers, and nanomachines. In particular, DNA origami—which is a simple yet versatile technique that allows one to create various nanoscale shapes and patterns—is at the heart of the technology. In this thesis, I describe the development of programmable self-assembly and reconfiguration of DNA origami nanostructures based on a unique strategy: rather than relying on Watson-Crick base pairing, we developed programmable bonds via the geometric arrangement of stacking interactions, which we termed stacking bonds. We further demonstrated that such bonds can be dynamically reconfigurable.
The first part of this thesis describes the design and implementation of stacking bonds. Our work addresses the fundamental question of whether one can create diverse bond types out of a single kind of attractive interaction—a question first posed implicitly by Francis Crick while seeking a deeper understanding of the origin of life and primitive genetic code. For the creation of multiple specific bonds, we used two different approaches: binary coding and shape coding of geometric arrangement of stacking interaction units, which are called blunt ends. To construct a bond space for each approach, we performed a systematic search using a computer algorithm. We used orthogonal bonds to experimentally implement the connection of five distinct DNA origami nanostructures. We also programmed the bonds to control cis/trans configuration between asymmetric nanostructures.
The second part of this thesis describes the large-scale self-assembly of DNA origami into two-dimensional checkerboard-pattern crystals via surface diffusion. We developed a protocol where the diffusion of DNA origami occurs on a substrate and is dynamically controlled by changing the cationic condition of the system. We used stacking interactions to mediate connections between the origami, because of their potential for reconfiguring during the assembly process. Assembling DNA nanostructures directly on substrate surfaces can benefit nano/microfabrication processes by eliminating a pattern transfer step. At the same time, the use of DNA origami allows high complexity and unique addressability with six-nanometer resolution within each structural unit.
The third part of this thesis describes the use of stacking bonds as dynamically breakable bonds. To break the bonds, we used biological machinery called the ParMRC system extracted from bacteria. The system ensures that, when a cell divides, each daughter cell gets one copy of the cell’s DNA by actively pushing each copy to the opposite poles of the cell. We demonstrate dynamically expandable nanostructures, which makes stacking bonds a promising candidate for reconfigurable connectors for nanoscale machine parts.
Resumo:
Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions.
The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(log N + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TU06] where they obtained curve samplers with near-optimal randomness complexity.
In this thesis, we present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor) that sample curves of degree (m logq(1/δ))O(1) in Fqm. Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes.