931 resultados para Cosmetic dye
Resumo:
The present paper analyzes the effects of plumes for heat transfer enhancement at solid-liquid interface taking both smooth and grooved surfaces. The experimental setup consists of a tank of dimensions 265 x 265 x 300 (height) containing water. The bottom surface was heated and free surface of the water was left open to the ambient. In the experiments, the bottom plate had either a smooth surface or a grooved surface. We used 90 V-grooved rough surfaces with two groove heights, 10mm and 3mm. The experiment was done with water layer depths of 90mm and 140mm, corresponding to values of aspect ratio(AR) equal to 2.9 and 1.8 respectively. Thymol blue, a pH sensitive dye, was used to visualize the flow near the heated plate. The measured heat transfer coefficients over the grooved surfaces were higher compared that over the smooth surface. The enhanced heat transport in the rough cavities cannot be ascribed to the increase in the contact area, rather it must be the local dynamics of the thermal boundary layer that changes the heat transport over the rough surface.
Resumo:
In comparison to the flow in a rigid channel, there is a multifold reduction in the transition Reynolds number for the flow in a microchannel when one of the walls is made sufficiently soft, due to a dynamical instability induced by the fluid-wall coupling, as shown by Verma & Kumaran (J. Fluid Mech., vol. 727, 2013, pp. 407-455). The flow after transition is characterised using particle image velocimetry in the x-y plane, where x is the streamwise direction and y is the cross-stream coordinate along the small dimension of the channel of height 0.2-0.3 mm. The flow after transition is characterised by a mean velocity profile that is flatter at the centre and steeper at the walls in comparison to that for a laminar flow. The root mean square of the streamwise fluctuating velocity shows a characteristic sharp increase away from the wall and a maximum close to the wall, as observed in turbulent flows in rigid-walled channels. However, the profile is asymmetric, with a significantly higher maximum close to the soft wall in comparison to that close to the hard wall, and the Reynolds stress is found to be non-zero at the soft wall, indicating that there is a stress exerted by fluid velocity fluctuations on the wall. The maximum of the root mean square of the velocity fluctuations and the Reynolds stress (divided by the fluid density) in the soft-walled microchannel for Reynolds numbers in the range 250-400, when scaled by suitable powers of the maximum velocity, are comparable to those in a rigid channel at Reynolds numbers in the range 5000-20 000. The near-wall velocity profile shows no evidence of a viscous sublayer for (y upsilon(*)/nu) as low as two, but there is a logarithmic layer for (y upsilon(*)/nu) up to approximately 30, where the von Karman constants are very different from those for a rigid-walled channel. Here, upsilon(*) is the friction velocity, nu is the kinematic viscosity and y is the distance from the soft surface. The surface of the soft wall in contact with the fluid is marked with dye spots to monitor the deformation and motion along the fluid-wall interface. Low-frequency oscillations in the displacement of the surface are observed after transition in both the streamwise and spanwise directions, indicating that the velocity fluctuations are dynamically coupled to motion in the solid.
Resumo:
The current work reports quantitative OH species concentration in the cavity of a trapped vortex combustor (TVC) in the context of mixing and flame stabilization studies using both syngas and methane fuels. Planar laser induced fluorescence (PLIF) measurements of OH radical obtained using a Nd: YAG pumped dye laser are quantified using a flat flame McKenna burner. The momentum flux ratio (MFR), defined as the ratio of the cavity fuel jet momentum to that of the guide vane air stream, is observed to be a key governing parameter. At high MFRs similar to 4.5, the flame front is observed to form at the interface of the fuel jet and the air jet stream. This is substantiated by velocity vector field measurements. For syngas, as the MFR is lowered to similar to 0.3, the fuel-air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. This trend is observed for different velocities at similar equivalence ratios. In case of methane combustion in the cavity, where the MFRs employed are extremely low at similar to 0.01, a different mechanism is observed. A fuel-rich mixture is now observed at the center of the cavity and this mixture undergoes combustion. On further increase of the cavity equivalence ratio, the rich mixture exceeds the flammability limit and forms a thin reaction zone at the interface with air stream. As a consequence, a shear layer flame at the top of the cavity interface with the mainstream is also observed. The equivalence ratio in the cavity also determines the combustion characteristics in the case of fuel-air mixtures that are formed as a result of the mixing. Overall, flame stabilization mechanisms have been proposed, which account for the wide range of MFRs and premixing in the mainstream as well.
Resumo:
Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 2646642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50 % of the total volume and 50-60 % of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of = 350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.
Resumo:
Plasmonics based sensing, using the surface plasmon resonance of metal nanoparticles, has been effectively demonstrated in various applications. Extending this methodology to cell and artificial lipid bilayer membranes is extremely beneficial in enhancing the sensitivity of the detection of binding and cellular transport of molecules across such membranes. Here, the creation of an artificial plasmonic biomembrane template is demonstrated and used to show the enhanced detection sensitivity of certain widely used biomarker molecules. The efficacy of these templates is explained in terms of the ability of the hydrophobic polymer grafted gold nanoparticles used to organize, penetrate, and fluidize the membranes. The enhancement of photoluminescence of the dye molecules used occurs over a reasonably large spectral range as compared to the plasmon resonance of gold nanoparticles. The results could, possibly, be extended to cellular membranes with relevant modifications, as well as to the detection of any other biological molecule appropriately labeled with fluorescent dye molecules, and demonstrate the versatility of these plasmonic bioinspired platforms as potential biochemical sensors.
Resumo:
A study on self-assembly of anisotropically substituted penta-aryl fullerenes in water has been reported. The penta-phenol-substituted amphiphilic fullerene derivative C60Ph5(OH)(5)],exhibited self-assembled vesicular nanostructures in water under the experimental conditions. The size of the vesicles Was observed to depend upon the kinetics of self-assembly and could be varied from similar to 300 to similar to 70 nm. Our mechanistic study indicated that the self-assembly of C60Ph5(OH)(5) is driven by extensive intermolecular as well as water-mediated hydrogen :bonding along with fullerene-fullerene hydrophobic interaction in water. The cumulative effect of these interactions is responsible for the stability of vesicular structures even on the removal of solvent. The substitution of phenol with anisole resulted in different packing and interaction of the fullerene derivative, as Indicated in the molecular dynamics studies, thus resulting in different self-assembled nanostructures. The hollow vesicles were further encapsulated with a hydrophobic conjugated polymer and water-soluble dye as guest molecules. Such confinement of pi-conjugated polymers in fullerene has significance in bulk heterojunction devices for efficient exciton diffusion.
Resumo:
A water soluble third generation poly(alkyl aryl ether) dendrimer was examined for its ability to solubilize hydrophobic polyaromatic molecules in water and facilitate non-radiative resonance energy transfer between them. One to two orders of magnitude higher aqueous solubilities of pyrene (PY), perylene (PE), acridine yellow (AY) and acridine orange (AO) were observed in presence of a defined concentration of the dendrimer. A reduction in the quantum yield of the donor PY* emission and a partial decrease in lifetime of the donor excited state revealed the occurrence of energy transfer from dendrimer solubilized excited PY to ground state PE molecules, both present within a dendrimer. The energy transfer efficiency was estimated to be similar to 61%. A cascade resonance energy transfer in a three component system, PY*-to-PE-to-AY and PY*-to-PE-to-AO, was demonstrated through incorporation of AY or AO in the two component PY-PE system. In the three-component system, excitation of PY resulted in emission from AY or AO via a cascade energy transfer process. Careful choice of dye molecules with good spectral overlap and the employment of dendrimer as the medium enabled us to expand absorption-emission wavelengths, from similar to 330 nm to similar to 600 nm in aqueous solution. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells. (C) 2016 Author(s).
Resumo:
El presente trabajo es el resultado de un diagnóstico realizado en el municipio de Nueva Guinea, Zelaya Central, en la época de apante (1994-1995). El estudio fue dirigido a los factores biológicos que afectan la producción de frijol común (Phaseolus vulgaris L.) principalmente plagas, enfermedades y malezas. El estudio abarcó nueve colonias y 14 productores del municipio de Nueva Guinea. Los resultados muestran que el principal problema de plagas es la babosa Vaginulus plebeius Fisher. Las medias de control contra las plagas están enfocadas al manejo de la especie en mención. Referente a las malezas se observó predominancia de malezas de hoja fina tales como retumbo Rottboellia cochinchinenesís (Lour) Clayton, zacate guinea Panicum maximun Jacq., retana Ischaemun ciliari Salisb y el zacate gallina Cynodon dactylon (L.) Pers. Las malezas de hoja ancha se presentaron en menor proporción, sobresaliendo la especie batatilla o campanila lpomoea tilliaceae (Wild) Choisy. La diversidad de las malezas es mayor en labranza convencional. la menor cantidad de especies de malezas se encontró en la labranza mínima. Las enfermedades de mayor relevancia son la antracnosis Colletotríchum lindemutianum ( Sacc & Magnus ) BCMV (virus del mosaíco común del frijol) y bacteriosis común del frijol Xanthomonas campestris pv phaseoli ( Smith ) Dye. La escasa precipitación durante el período del estudio probablemente influyó en que las enfermedades fungosas no se manifestaran en los lotes muestreados. El análisis económico muestra que la producción de frijol común en Nueva Guinea no fue rentable en el ciclo estudiado.
Resumo:
H-2 and O-2 multiplex coherent anti-stokes Raman spectroscopy (CARS) employing a single dye laser has been explored to simultaneously determine the temperature and concentrations of H-2 and O-2 in a hydrogen-fueled supersonic combustor. Systematic calibrations were performed through a well-characterized H-2/air premixed flat-flame burner. In particular, temperature measurement was accomplished using the intensity ratio of the H-2 S(5) and S(6) rotational lines, whereas extraction of the H-2 and O-2 concentrations was obtained from the H-2 S(6) and O-2 Q-branch, respectively. Details of the calibration procedure and data reduction are discussed. Quantification of the supersonic mixing and combustion characteristics applying the present technique has been demonstrated to be feasible. The associated detection limits as well as possible improvements are also identified.
Resumo:
En la Estación Experimental La Compañía, Carazo, en el ciclo de primera de 1997, se realizó un estudio de caracterización y ensayo de rendimiento de 19 genotipos de frijol (Phaseolus vulgaris L) de variedades comerciales, líneas promisorias y élites seleccionadas por el Sub Programa Nacional de Frijol. La caracterización se en marcó en un ensayo de rendimiento con parcelas distribuidas en un arreglo de B.C.A. con 4 repeticiones de 6 surcos y 5 m de longitud donde se seleccionaron 10 plantas por repetición. Para la caracterización se tomaron datos de 33 caracteres cualitativos y cuantitativos utilizando la metodología descrita por el Centro Internacional de Agricultura Tropical (CIAT) con algunas modificaciones, y otras variables fenológicas (vegetativa y reproductiva) y evaluación de enfermedades. Para los caracteres cuantitativos se reportan la media, valores mínimo, máximo y desviación estándar, coeficiente de variación, para rendimiento y variables relacionadas correlaciones de pearson y para caracteres cualitativos la moda estadística. El ensayo de rendimiento indica que hay diferencia significativa entre tratamientos Pr= O.0001 y un CV = 11.37 porciento. Se presentaron 6 categorías estadísticas según Tukey al 95 por ciento, el mayor rendimiento promedio fue obtenido por la línea Dor 576 con 1906.2 kg/ha y el menor por el testigo Estelí 150 con 1036.5 kg/ha. El testigo Dor 364 con rendimiento de 1635.4 kg/ha no fue superado estadísticamente por ninguno de los genotipos evaluados; de forma numérica es superado por 4 genotipos, 16 tratamientos presentaron un comportamiento estadísticamente similar a este testigo. El testigo Estelí 90A fue superado estadísticamente por los genotipos Dor 576 y Dor 531 y numéricamente por 15 líneas. El testigo Estelí 150 es superado estadísticamente por 11 tratamientos y numéricamente por 18 líneas. Se elaboró un catálogo descriptivo para los 19 genotipos estudiados, siguiendo los procedimientos internacionales de ordenamiento y codificación propuestas por el Consejo Internacional de Recursos Fito genéticos (IBPGR 1982) ver anexos. En la evaluación de enfermedades la línea Eap-4 presentó la menor severidad a la enfermedad presente, bacteriosis (Xanthomonas campestri pv phaseoli)(Smith)Dye.
Resumo:
A direct comparison between time resolved PLIF measurements of OH and two dimensional slices from a full three dimensional DNS data set of turbulent premixed flame kernels in lean methane/air mixture was presented. The local flame structure and the degree of flame wrinkling were examined in response to differing turbulence intensities and turbulent Reynolds numbers. Simulations were performed using the SEGA DNS code, which is based on the solution of the compressible Navier Stokes, species, and energy equations for a lean hydrocarbon mixture. For the OH PLIF measurements, a cluster of four Nd:YAG laser was fired sequentially at high repetition rates and used to pump a dye laser. The frequency doubled laser beam was formed into a sheet of 40 mm height using a cylindrical telescope. The combination of PLIF and DNS has been demonstrated as a powerful tool for flame analysis. This research will form the basis for the development of sub-grid-scale (SGS) models for LES of lean-premixed combustion systems such as gas turbines. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).
Resumo:
CHAP 1 - Introduction to the Guide CHAP 2 - Solution chemistry of carbon dioxide in sea water CHAP 3 - Quality assurance CHAP 4 - Recommended standard operating procedures (SOPs) SOP 1 - Water sampling for the parameters of the oceanic carbon dioxide system SOP 2 - Determination of total dissolved inorganic carbon in sea water SOP 3a - Determination of total alkalinity in sea water using a closed-cell titration SOP 3b - Determination of total alkalinity in sea water using an open-cell titration SOP 4 - Determination of p(CO2) in air that is in equilibrium with a discrete sample of sea water SOP 5 - Determination of p(CO2) in air that is in equilibrium with a continuous stream of sea water SOP 6a - Determination of the pH of sea water using a glass/reference electrode cell SOP 6b - Determination of the pH of sea water using the indicator dye m-cresol purple SOP 7 - Determination of dissolved organic carbon and total dissolved nitrogen in sea water SOP 7 en Español - Determinacion de carbono organico disuelto y nitrogeno total disuelto en agua de mar SOP 11 - Gravimetric calibration of the volume of a gas loop using water SOP 12 - Gravimetric calibration of volume delivered using water SOP 13 - Gravimetric calibration of volume contained using water SOP 14 - Procedure for preparing sodium carbonate solutions for the calibration of coulometric CT measurements SOP 21 - Applying air buoyancy corrections SOP 22 - Preparation of control charts SOP 23 - Statistical techniques used in quality assessment SOP 24 - Calculation of the fugacity of carbon dioxide in the pure gas or in air CHAP 5 - Physical and thermodynamic data Errata - to the hard copy of the Guide to best practices for ocean CO2 measurements
Resumo:
Torpedograss (Panicum repens L.) is one of the most invasive exotic plants in aquatic systems. Repeat applications of (N-phosphonomethyl) glycine (glyphosate) herbicides provide limited control of torpedograss; unfortunately, glyphosate often negatively impacts most non-target native species that grow alongside the weed. This experiment studied the effect of glyphosate on pickerelweed (Pontederia cordata L.), a native plant that shares habitats with torpedograss. Actively growing plants of torpedograss and pickerelweed were cultured in 8-liter containers and sprayed to wet with one of four rates of glyphosate: 0%, 0.75%, 1.0%, or 1.5%. Each treatment included a surfactant to aid in herbicide uptake and a surface dye to verify uniform application of the treatments. All herbicide treatments were applied with a backpack sprayer to intact plants and to cut stubble of both species. Four replicates were treated for each species-rategrowth combination during each of two experiment periods. Plant dry weights 8 weeks after herbicide application suggest that torpedograss was effectively controlled by the highest rate of glyphosate applied to cut stubble. Pickerelweed was unaffected when the highest rate of glyphosate was applied as a cut-and-spray treatment. These data suggest that a cut-and-spray application of a 1.5% solution of glyphosate may be an effective strategy to control torpedograss without deleteriously affecting pickerelweed. (PDF contains 4 pages.)
Resumo:
Polymer optical fibers (POFs) doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.