943 resultados para Control Mechanisms
Resumo:
In recent years marine biotechnology has revealed a crucial role in the future of bioindustry. Among the many marine resources, cyanobacteria have shown great potential in the production of bioactive compounds with diverse applicability. The pharmacological potential of these organisms has been one of the most explored areas in particular its antibacterial, antifungal and anticancer potential. This work was based on the assessment of potential anticancer compound E13010 F 5.4 isolated from marine cyanobacteria strain Synechocystis salina LEGE 06099. Thus the aim of this work was to explore molecular and biochemical mechanisms underlying the bioactivity detected in human cancer cells, specifically in lines RKO colon carcinoma and HT-29. The isolation of the compound was performed from biomass obtained by large-scale culture. To obtain the compound fractionation was carried and confirmation and isolation performed by Nuclear Magnetic Resonance (NMR), Thin Layer Chromatography (TLC) and High-Performance Liquid Chromatography (HPLC). Cell viability assays were performed based on reduction of 3- (4,5-dimetiltiaziol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) to assess the cytotoxic potential of the compound. From the battery of cell lines RKO (colon carcinoma), HT-29 (colorectal adenocarcinoma), MG-63 (osteosarcoma) and T47D (breast carcinoma) the cell lines RKO and HT-29 were selected for elucidation of mechanisms of cytotoxicity. For the elucidation of the mechanisms involved in cytotoxicity the cell lines RKO and HT29 were exposed to the compound. A genomic approach based in the mRNA expression of genes involved in apoptosis and cell cycle by Real-Time PCR and a proteomic approach based on the separation of proteins by two-dimensional electrophoresis (2DGE) was performed. For mRNA expression were selected the genes RPL8, HPRT1, VDAC, SHMT2, CCNE, CCNB1, P21CIP, BCL-2 and BAD and for proteomics isoelectric focussing between 3 – 10 and molecular weight of 19 – 117 kDa separated by polyacrylamide gels (2DGE). The MTT results confirmed the reduction of the cell viability. The RT-PCR results for the expression of genes studied were not yet fully elucidative. For the cell line RKO there was a significant reduction in the expression of the gene P21CIP, and a tendency for reduction in the BAD gene expression and for increased expression of gene CCNB1, pointing to an effort for cell proliferation. In HT-29 cell line, there was a tendency for increase in the expression of P21CIP and BAD, which may explain the reduction in cell viability. The 2DGE results indicate proteomic patterns with differentially altered spots in the treated and control cells with both qualitative and quantitative differences, and differences in response between the RKO and HT-29 cell lines.
Resumo:
This dissertation uses children’s acquisition of adjunct control as a case study to investigate grammatical and performance accounts of language acquisition. In previous research, children have consistently exhibited non-adultlike behavior for sentences with adjunct control. To explain children’s behavior, several different grammatical accounts have been proposed, but evidence for these accounts has been inconclusive. In this dissertation, I take two approaches to account for children’s errors. First, I spell out the predictions of previous grammatical accounts, and test these predictions after accounting for some methodological concerns that might have influenced children’s behavior in previous studies. While I reproduce the non-adultlike behavior observed in previous studies, the predictions of previous grammatical accounts are not borne out, suggesting that extragrammatical factors are needed to explain children’s behavior. Next, I consider the role of two different types of extragrammatical factors in predicting children’s non-adultlike behavior. With a new task designed to address the task demands in previous studies, children exhibit significantly higher accuracy than with previous tasks. This suggests that children’s behavior has been influenced by task- specific processing factors. In addition to the task, I also test the predictions of a similarity-based interference account, which links children’s errors to the same memory mechanisms involved in sentence processing difficulties observed in adults. These predictions are borne out, supporting a more continuous developmental trajectory as children’s processing mechanisms become more resistant to interference. Finally, I consider how children’s errors might influence their acquisition of adjunct control, given the distribution in the linguistic input. I discuss the results of a corpus analysis, including the possibility that adjunct control could be learned from the input. The kinds of information that could be useful to a learner become much more limited, however, after considering the processing limitations that would interfere with the representations available to the learner.
Resumo:
Dissertação de mestrado, Aquacultura e Pescas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Allelopathy determines the dynamics of plant species in different environments. Understanding this biological phenomenon could help to develop applications in both natural and agricultural systems. This review summarizes the genetic and environmental characteristics that control the production and release of allelochemicals in agroecosystems. This study highlights the current understanding of the environmental changes caused by allelochemicals and summarizes the knowledge about the mechanisms of action of these compounds. Finally, it reviews novel applications of allelopathy in agricultural production systems, including the role of allelochemicals in consortia and their potential use in no-tillage cropping systems through cover crops or mulches.
Resumo:
BACKGROUND Anaplasma phagocytophilum infects a wide variety of hosts and causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. Infection with A. phagocytophilum results in the modification of host gene expression and immune response. The objective of this research was to characterize gene expression in pigs (Sus scrofa) naturally and experimentally infected with A. phagocytophilum trying to identify mechanisms that help to explain low infection prevalence in this species. RESULTS For gene expression analysis in naturally infected pigs, microarray hybridization was used. The expression of differentially expressed immune response genes was analyzed by real-time RT-PCR in naturally and experimentally infected pigs. Results suggested that A. phagocytophilum infection affected cytoskeleton rearrangement and increased both innate and adaptive immune responses by up regulation of interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), T-cell receptor alpha chain (TCR-alpha), thrombospondin 4 (TSP-4) and Gap junction protein alpha 1 (GJA1) genes. Higher serum levels of IL-1 beta, IL-8 and TNF-alpha in infected pigs when compared to controls supported data obtained at the mRNA level. CONCLUSIONS These results suggested that pigs are susceptible to A. phagocytophilum but control infection, particularly through activation of innate immune responses, phagocytosis and autophagy. This fact may account for the low infection prevalence detected in pigs in some regions and thus their low or no impact as a reservoir host for this pathogen. These results advanced our understanding of the molecular mechanisms at the host-pathogen interface and suggested a role for newly reported genes in the protection of pigs against A. phagocytophilum.
Resumo:
Pyrimethanil is a fungicide mostly applied in vineyards. When misused, residue levels detected in grape must or in the environment may be of concern. The present work aimed to analyze mechanisms underlying response to deleterious effects of pyrimethanil in the eukaryotic model Saccharomyces cerevisiae. Pyrimethanil concentration-dependent effects at phenotypic (inhibition of growth) and transcriptomic levels were examined. For transcriptional profiling, analysis focused on two sublethal exposure conditions that inhibited yeast growth by 20% or 50% compared with control cells not exposed to the fungicide. Gene expression modifications increased with the magnitude of growth inhibition, in numbers and fold-change of differentially expressed genes and in diversity of over-represented functional categories. These included mostly biosynthesis of arginine and sulfur amino acids metabolism, as well as energy conservation, antioxidant response, and multidrug transport. Several pyrimethanil-responsive genes encoded proteins sharing significant homology with proteins from phytopathogenic fungi and ecologically relevant higher eukaryotes.
Resumo:
Thesis (Ph.D, Psychology) -- Queen's University, 2016-10-04 17:37:07.888
Resumo:
The development of Ribosome Profiling (RiboSeq) has revolutionized functional genomics. RiboSeq is based on capturing and sequencing of the mRNA fragments enclosed within the translating ribosome and it thereby provides a â snapshotâ of ribosome positions at the transcriptome wide level. Although the method is predominantly used for analysis of differential gene expression and discovery of novel translated ORFs, the RiboSeq data can also be a rich source of information about molecular mechanisms of polypeptide synthesis and translational control. This review will focus on how recent findings made with RiboSeq have revealed important details of the molecular mechanisms of translation in eukaryotes. These include mRNA translation sensitivity to drugs affecting translation initiation and elongation, the roles of upstream ORFs in response to stress, the dynamics of elongation and termination as well as details of intrinsic ribosome behavior on the mRNA after translation termination. As the RiboSeq method is still at a relatively early stage we will also discuss the implications of RiboSeq artifacts on data interpretation.
Resumo:
Tissue mechanics and cellular interactions influence every single cell in our bodies to drive morphogenesis. However, little is known about mechanisms by which cells sense physical forces and transduce them from the cytoskeleton to the nucleus to control gene expression and stem cell fate. We have identified a novel nuclear-mechanosensor complex, consisting of the nuclear membrane protein emerin (Emd), actin and non-muscle myosin IIA (NMIIA), that regulates transcription, chromatin remodeling and lineage commitment. Force-induced enrichment of Emd at the outer nuclear membrane leads to a compensation between H3K9me2,3 and H3K27me3 on constitutive heterochromatin. This strain-induced epigenetic switch is accompanied by the global rearrangement of chromatin. In parallel, forces promote local F-actin polymerization at the outer nuclear membrane, which limits the availability of nuclear G-actin. Subsequently, the reduction of nuclear G-actin results in attenuated global transcription and therefore increased H3K27me3 occupancy to reinforce gene silencing. Restoring nuclear actin levels in the presence of mechanical strain counteracts PRC2-mediated silencing of transcribed genes. This mechanosensory circuit is also observed in vivo. Depletion of NMIIA in mouse epidermis leads to decreased H3K27me3 levels and precocious lineage commitment, thus abrogating organ growth and patterning. Our results reveal how mechanical signals regulate nuclear architecture, chromatin organization and transcription to control cell fate decisions.
Resumo:
El desarrollo tecnológico y la expansión de las formas de comunicación en Colombia, no solo trajeron consigo grandes beneficios, sino también nuevos retos para el Estado Moderno. Actualmente, la oferta de espacios de difusión de propaganda electoral ha aumentado, mientras persiste un marco legal diseñado para los medios de comunicación del Siglo XX. Por tanto, este trabajo no solo realiza un diagnóstico de los actuales mecanismos de control administrativo sobre la propaganda electoral en Internet, sino también propone unos mecanismos que garanticen los principios de la actividad electoral, siendo esta la primera propuesta en Colombia. Por el poco estudio del tema, su alcance es exploratorio, se basa en un enfoque jurídico-institucional. Se utilizaron métodos cualitativos de recolección de datos (trabajo de archivo y entrevistas) y de análisis (tipologías, comparaciones, exegesis del marco legal), pero también elementos cuantitativos como análisis estadísticos.
Resumo:
ResumenLas Reformas Borbónicas habían comenzado a desmantelar el poder de los comerciantes del Consulado de México. El empleo de las libranzas y de otros mecanismos les devolvió su papel central en la economía de la Nueva España. Así pudieron controlar el comercio interno, ser los intermediarios entre diversos sectores económicos y los monopolistas del comercio exterior, cuya base primordial era el intercambio de plata por mercancías.AbstractThe Bourbon reforms had begun to weaken the power of the merchants of the Consulado de México. The use of libranzas and other mechanisms allowed them to recover a central role in the economic of New Spain. Thus they were able to control domestic trade, to act as intermediaries between various economic sectors and monopolize foreign trade the essential basis for which was the exchange of silver for mercantile commodities.
Resumo:
La Iglesia católica desde que llegó al continente americano de la mano de los conquistadores y colonizadores europeos, desempeñó tareas vinculadas con el control y vigilancia de la población que aquí habitaba. Esta labor la siguió desempeñando luego de la independencia de las colonias españolas. El presente artículo pretende dilucidar cómo se estableció la colaboración brindada al estado por parte de la jerarquía del catolicismo costarricense luego de erigida la Diócesis de San José hasta el fin del obispado josefino en 1920 en las tareas de controlar, vigilar y apropiarse tanto -del espacio geográfico considerado como costarricense, como de los habitantes que residían en dichos territorios. Por ello se analizará cuáles fueron y como utilizó la jerarquía de la Iglesia católica costarricense los mecanismos de control que tenía a su disposición para alcanzar tales objetivos.Abstract This essay analyzes the collaboration of the Catholic Church with the Costa Rican State between the foundations of the Diocese of San José until 1920. lt shows how the Church helped to control, watch and take over the geographical space of Costa Rica and individual living in that land. It also studies mechanisms of control the Catholic Church carried out in this process.
Resumo:
Choosing natural enemies to suppress pest population has been for a long the key of biological control. Overtime the term biological control has also been applied to the use of suppressive soils, bio-disinfection and biopesticides. Biological control agents (BCA) and natural compounds, extracted or fermented from various sources, are the resources for containing phytopathogens. BCA can act through direct antagonism mechanisms or inducing hypovirulence of the pathogen. The first part of the thesis focused on mycoviruses infecting phytopathogenic fungi belonging to the genus Fusarium. The development of new approaches capable of faster dissecting the virome of filamentous fungi samples was performed. The semiconductor-based sequencer Ion Torrent™ and the nanopore-based sequencer MinION have been exploited to analyze DNA and RNA referable to viral genomes. Comparison with GeneBank accessions and sequence analysis allowed to identify more than 40 putative viral species, some of these mycovirus genera have been studied as inducers of hypovirulence in several phytopathogenic fungi, therefore future works will focus on the comparison of the morphology and physiology of the fungal strain infected and cured by the viruses identified and their possible use as a biocontrol agent. In a second part of the thesis the potential of botanical pesticides has been evaluated for the biocontrol of phloem limited phytopathogens such as phytoplasmas. The only active compounds able to control phytoplasmas are the antibiotic oxytetracyclines and in vitro direct and fast screening of new antimicrobials compounds on media is almost impossible due to the difficulty to culture phytoplasmas. For this reason, a simple and reliable screening method was developed to evaluate the effects of antimicrobials directly on phytoplasmas by an “ex-vivo” approach. Using scanning electron microscopy (SEM) in parallel with molecular tools (ddRT-PCR), the direct activity of tetracyclines on phytoplasma cells was verified, identifying also a promising compound showing similar activity.
Resumo:
Fabry disease (FD) is an X‐linked inherited, lysosomal storage disorder characterized by a deficient activity of the enzyme α-Galactosidase A (α-Gal A). This deficiency causes an accumulation of globotriaosylceramide 3 (Gb3), in nearly all organs. Gastrointestinal (GI) symptoms are among the earliest and most frequent symptoms of FD. It has been hypothesized that Gb3 accumulation is the leading cause of these, but their pathophysiology is complex and still poorly understood. Here, we aim at understanding the molecular mechanisms underpinning the GI symptoms of FD. For this purpose, we used the α‐Gal A (-/0) male mouse, a murine model of FD, to characterize morphological and molecular features of the colon tract. Our results show that α‐Gal A (-/0) mice display a thickening of the muscular layer due to a hypertrophic state of myenteric plexus ganglia, caused by an accumulation of Gb3 in neurons. Also, α-Gal A (-/0) mice present a decreased density of mucosal nerve fibres. Furthermore, α-Gal A (-/0) mice presented visceral hyperalgesia, by showing greater visceromotor response (VMR) values and obtaining higher abdominal withdrawal reflex (AWR) scores, following colorectal distension (CRD). Subsequently, the immunoreactivity of the pain-related ion channels TRPV1, TRPV4, TRPA1 and TRPM8 was detected at level of myenteric and submucosal plexus ganglia of both the genotypes. Further studies are required to assess differences of expression between α-Gal A (-/0) and control mice. Finally, we optimized the protocols to obtain three types of primary cultures from mouse intestine to be tested electrophysiologically: a mixed culture containing neurons and glia, an enriched culture of neurons, and one of glia. In summary, we revealed alterations that are likely to be part of the pathophysiological causes of FD GI symptoms. Therefore, together with further studies, this work could help identify new therapeutic targets for the treatment of visceral pain in FD.
Resumo:
Previous results provided evidence that Cratylia mollis seed lectin (Cramoll 1,4) promotes Trypanosoma cruzi epimastigotes death by necrosis via a mechanism involving plasma membrane permeabilization to Ca(2+) and mitochondrial dysfunction due to matrix Ca(2+) overload. In order to investigate the mechanism of Ca(2+) -induced mitochondrial impairment, experiments were performed analyzing the effects of this lectin on T. cruzi mitochondrial fraction and in isolated rat liver mitochondria (RLM), as a control. Confocal microscopy of T. cruzi whole cell revealed that Cramoll 1,4 binding to the plasma membrane glycoconjugates is followed by its internalization and binding to the mitochondrion. Electrical membrane potential (∆Ψm ) of T. cruzi mitochondrial fraction suspended in a reaction medium containing 10 μM Ca(2+) was significantly decreased by 50 μg/ml Cramoll 1,4 via a mechanism insensitive to cyclosporine A (CsA, membrane permeability transition (MPT) inhibitor), but sensitive to catalase or 125 mM glucose. In RLM suspended in a medium containing 10 μM Ca(2+) this lectin, at 50 μg/ml, induced increase in the rate of hydrogen peroxide release, mitochondrial swelling, and ∆Ψm disruption. All these mitochondrial alterations were sensitive to CsA, catalase, and EGTA. These results indicate that Cramoll 1, 4 leads to inner mitochondrial membrane permeabilization through Ca(2+) dependent mechanisms in both mitochondria. The sensitivity to CsA in RLM characterizes this lectin as a MPT inducer and the lack of CsA effect identifies a CsA-insensitive MPT in T. cruzi mitochondria.