791 resultados para Concerns Based Adoption Model CBAM
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
[EN]Ensemble forecasting is a methodology to deal with uncertainties in the numerical wind prediction. In this work we propose to apply ensemble methods to the adaptive wind forecasting model presented in. The wind field forecasting is based on a mass-consistent model and a log-linear wind profile using as input data the resulting forecast wind from Harmonie, a Non-Hydrostatic Dynamic model used experimentally at AEMET with promising results. The mass-consistent model parameters are estimated by using genetic algorithms. The mesh is generated using the meccano method and adapted to the geometry…
Resumo:
In the framework of developing defect-based life models, in which breakdown is explicitly associated with partial discharge (PD)-induced damage growth from a defect, ageing tests and PD measurements were carried out in the lab on polyethylene (PE) layered specimens containing artificial cavities. PD activity was monitored continuously during aging. A quasi-deterministic series of stages can be observed in the behavior of the main PD parameters (i.e. discharge repetition rate and amplitude). Phase-resolved PD patterns at various ageing stages were reproduced by numerical simulation which is based on a physical discharge model devoid of adaptive parameters. The evolution of the simulation parameters provides insight into the physical-chemical changes taking place at the dielectric/cavity interface during the aging process. PD activity shows similar time behavior under constant cavity gas volume and constant cavity gas pressure conditions, suggesting that the variation of PD parameters may not be attributed to the variation of the gas pressure. Brownish PD byproducts, consisting of oxygen containing moieties, and degradation pits were found at the dielectric/cavity interface. It is speculated that the change of PD activity is related to the composition of the cavity gas, as well as to the properties of dielectric/cavity interface.
Resumo:
A recent initiative of the European Space Agency (ESA) aims at the definition and adoption of a software reference architecture for use in on-board software of future space missions. Our PhD project placed in the context of that effort. At the outset of our work we gathered all the industrial needs relevant to ESA and all the main European space stakeholders and we were able to consolidate a set of technical high-level requirements for the fulfillment of them. The conclusion we reached from that phase confirmed that the adoption of a software reference architecture was indeed the best solution for the fulfillment of the high-level requirements. The software reference architecture we set on building rests on four constituents: (i) a component model, to design the software as a composition of individually verifiable and reusable software units; (ii) a computational model, to ensure that the architectural description of the software is statically analyzable; (iii) a programming model, to ensure that the implementation of the design entities conforms with the semantics, the assumptions and the constraints of the computational model; (iv) a conforming execution platform, to actively preserve at run time the properties asserted by static analysis. The nature, feasibility and fitness of constituents (ii), (iii) and (iv), were already proved by the author in an international project that preceded the commencement of the PhD work. The core of the PhD project was therefore centered on the design and prototype implementation of constituent (i), a component model. Our proposed component model is centered on: (i) rigorous separation of concerns, achieved with the support for design views and by careful allocation of concerns to the dedicated software entities; (ii) the support for specification and model-based analysis of extra-functional properties; (iii) the inclusion space-specific concerns.
Resumo:
The motivating problem concerns the estimation of the growth curve of solitary corals that follow the nonlinear Von Bertalanffy Growth Function (VBGF). The most common parameterization of the VBGF for corals is based on two parameters: the ultimate length L∞ and the growth rate k. One aim was to find a more reliable method for estimating these parameters, which can capture the influence of environmental covariates. The main issue with current methods is that they force the linearization of VBGF and neglect intra-individual variability. The idea was to use the hierarchical nonlinear model which has the appealing features of taking into account the influence of collection sites, possible intra-site measurement correlation and variance heterogeneity, and that can handle the influence of environmental factors and all the reliable information that might influence coral growth. This method was used on two databases of different solitary corals i.e. Balanophyllia europaea and Leptopsammia pruvoti, collected in six different sites in different environmental conditions, which introduced a decisive improvement in the results. Nevertheless, the theory of the energy balance in growth ascertains the linear correlation of the two parameters and the independence of the ultimate length L∞ from the influence of environmental covariates, so a further aim of the thesis was to propose a new parameterization based on the ultimate length and parameter c which explicitly describes the part of growth ascribable to site-specific conditions such as environmental factors. We explored the possibility of estimating these parameters characterizing the VBGF new parameterization via the nonlinear hierarchical model. Again there was a general improvement with respect to traditional methods. The results of the two parameterizations were similar, although a very slight improvement was observed in the new one. This is, nevertheless, more suitable from a theoretical point of view when considering environmental covariates.
Resumo:
The concept of competitiveness, for a long time considered as strictly connected to economic and financial performances, evolved, above all in recent years, toward new, wider interpretations disclosing its multidimensional nature. The shift to a multidimensional view of the phenomenon has excited an intense debate involving theoretical reflections on the features characterizing it, as well as methodological considerations on its assessment and measurement. The present research has a twofold objective: going in depth with the study of tangible and intangible aspect characterizing multidimensional competitive phenomena by assuming a micro-level point of view, and measuring competitiveness through a model-based approach. Specifically, we propose a non-parametric approach to Structural Equation Models techniques for the computation of multidimensional composite measures. Structural Equation Models tools will be used for the development of the empirical application on the italian case: a model based micro-level competitiveness indicator for the measurement of the phenomenon on a large sample of Italian small and medium enterprises will be constructed.
Resumo:
In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.
Resumo:
This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.
Resumo:
MultiProcessor Systems-on-Chip (MPSoC) are the core of nowadays and next generation computing platforms. Their relevance in the global market continuously increase, occupying an important role both in everydaylife products (e.g. smartphones, tablets, laptops, cars) and in strategical market sectors as aviation, defense, robotics, medicine. Despite of the incredible performance improvements in the recent years processors manufacturers have had to deal with issues, commonly called “Walls”, that have hindered the processors development. After the famous “Power Wall”, that limited the maximum frequency of a single core and marked the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” and the “Utilization Wall” are the actual key limiter for performance improvements. The former concerns the damaging effects of the high temperature on the chip caused by the large power densities dissipation, whereas the second refers to the impossibility of fully exploiting the computing power of the processor due to the limitations on power and temperature budgets. In this thesis we faced these challenges by developing efficient and reliable solutions able to maximize performance while limiting the maximum temperature below a fixed critical threshold and saving energy. This has been possible by exploiting the Model Predictive Controller (MPC) paradigm that solves an optimization problem subject to constraints in order to find the optimal control decisions for the future interval. A fully-distributedMPC-based thermal controller with a far lower complexity respect to a centralized one has been developed. The control feasibility and interesting properties for the simplification of the control design has been proved by studying a partial differential equation thermal model. Finally, the controller has been efficiently included in more complex control schemes able to minimize energy consumption and deal with mixed-criticalities tasks
Resumo:
The development of a multibody model of a motorbike engine cranktrain is presented in this work, with an emphasis on flexible component model reduction. A modelling methodology based upon the adoption of non-ideal joints at interface locations, and the inclusion of component flexibility, is developed: both are necessary tasks if one wants to capture dynamic effects which arise in lightweight, high-speed applications. With regard to the first topic, both a ball bearing model and a journal bearing model are implemented, in order to properly capture the dynamic effects of the main connections in the system: angular contact ball bearings are modelled according to a five-DOF nonlinear scheme in order to grasp the crankshaft main bearings behaviour, while an impedance-based hydrodynamic bearing model is implemented providing an enhanced operation prediction at the conrod big end locations. Concerning the second matter, flexible models of the crankshaft and the connecting rod are produced. The well-established Craig-Bampton reduction technique is adopted as a general framework to obtain reduced model representations which are suitable for the subsequent multibody analyses. A particular component mode selection procedure is implemented, based on the concept of Effective Interface Mass, allowing an assessment of the accuracy of the reduced models prior to the nonlinear simulation phase. In addition, a procedure to alleviate the effects of modal truncation, based on the Modal Truncation Augmentation approach, is developed. In order to assess the performances of the proposed modal reduction schemes, numerical tests are performed onto the crankshaft and the conrod models in both frequency and modal domains. A multibody model of the cranktrain is eventually assembled and simulated using a commercial software. Numerical results are presented, demonstrating the effectiveness of the implemented flexible model reduction techniques. The advantages over the conventional frequency-based truncation approach are discussed.
Resumo:
During my PhD,I have been develop an innovative technique to reproduce in vitro the 3D thymic microenvironment, to be used for growth and differentiation of thymocytes, and possible transplantation replacement in conditions of depressed thymic immune regulation. The work has been developed in the laboratory of Tissue Engineering at the University Hospital in Basel, Switzerland, under the tutorship of Prof.Ivan Martin. Since a number of studies have suggested that the 3D structure of the thymic microenvironment might play a key role in regulating the survival and functional competence of thymocytes, I’ve focused my effort on the isolation and purification of the extracellular matrix of the mouse thymus. Specifically, based on the assumption that TEC can favour the differentiation of pre-T lymphocytes, I’ve developed a specific decellularization protocol to obtain the intact, DNA-free extracellular matrix of the adult mouse thymus. Two different protocols satisfied the main characteristics of a decellularized matrix, according to qualitative and quantitative assays. In particular, the quantity of DNA was less than 10% in absolute value, no positive staining for cells was found and the 3D structure and composition of the ECM were maintained. In addition, I was able to prove that the decellularized matrixes were not cytotoxic for the cells themselves, and were able to increase expression of MHC II antigens compared to control cells grown in standard conditions. I was able to prove that TECs grow and proliferate up to ten days on top the decellularized matrix. After a complete characterization of the culture system, these innovative natural scaffolds could be used to improve the standard culture conditions of TEC, to study in vitro the action of different factors on their differentiation genes, and to test the ability of TECs to induce in vitro maturation of seeded T lymphocytes.
Resumo:
The research hypothesis of the thesis is that “an open participation in the co-creation of the services and environments, makes life easier for vulnerable groups”; assuming that the participatory and emancipatory approaches are processes of possible actions and changes aimed at facilitating people’s lives. The adoption of these approaches is put forward as the common denominator of social innovative practices that supporting inclusive processes allow a shift from a medical model to a civil and human rights approach to disability. The theoretical basis of this assumption finds support in many principles of Inclusive Education and the main focus of the hypothesis of research is on participation and emancipation as approaches aimed at facing emerging and existing problems related to inclusion. The framework of reference for the research is represented by the perspectives adopted by several international documents concerning policies and interventions to promote and support the leadership and participation of vulnerable groups. In the first part an in-depth analysis of the main academic publications on the central themes of the thesis has been carried out. After investigating the framework of reference, the analysis focuses on the main tools of participatory and emancipatory approaches, which are able to connect with the concepts of active citizenship and social innovation. In the second part two case studies concerning participatory and emancipatory approaches in the areas of concern are presented and analyzed as example of the improvement of inclusion, through the involvement and participation of persons with disability. The research has been developed using a holistic and interdisciplinary approach, aimed at providing a knowledge-base that fosters a shift from a situation of passivity and care towards a new scenario based on the person’s commitment in the elaboration of his/her own project of life.
Resumo:
Efficient energy storage and conversion is playing a key role in overcoming the present and future challenges in energy supply. Batteries provide portable, electrochemical storage of green energy sources and potentially allow for a reduction of the dependence on fossil fuels, which is of great importance with respect to the issue of global warming. In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. rnrnSteps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well-defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of ‘immobilizing’ ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with pro-pylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length.rnrnAll model compounds were fully characterized, pure and thermally stable up to at least 235 °C, covering the requested broad range of glass transition temperatures from -78.1 °C up to +6.2 °C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity σ_dc and thus indicating comparable salt dissociation and rather independent motion of cations and ions.rnrnIn general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in combination to changes in glass transition temperatures. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The highest σ_dc obtained at ambient temperatures was 6.0 x 10-6 S•cm-1, strongly suggesting a rather tight coordination of the lithium ions to the solvating 2-oxo-1,3-dioxolane moieties, supported by the increased σ_dc values for the oligo(ethylene oxide) based analogues.rnrnFurther insights into the mechanism of lithium ion dynamics were derived from 7Li and 13C Solid- State NMR investigations. While localized ion motion was probed by i.e. 7Li spin-lattice relaxation measurements with apparent activation energies E_a of 20 to 40 kJ/mol, long-range macroscopic transport was monitored by Pulsed-Field Gradient (PFG) NMR, providing an E_a of 61 kJ/mol. The latter is in good agreement with the values determined from bulk conductivity data, indicating the major contribution of ion transport was only detected by PFG NMR. However, the μm-diffusion is rather slow, emphasizing the strong lithium coordination to the carbonyl oxygens, which hampers sufficient ion conductivities and suggests exploring ‘softer’ solvating moieties in future electrolytes.rn
Resumo:
In this thesis, we propose a novel approach to model the diffusion of residential PV systems. For this purpose, we use an agent-based model where agents are the families living in the area of interest. The case study is the Emilia-Romagna Regional Energy plan, which aims to increase the produc- tion of electricity from renewable energy. So, we study the microdata from the Survey on Household Income and Wealth (SHIW) provided by Bank of Italy in order to obtain the characteristics of families living in Emilia-Romagna. These data have allowed us to artificial generate families and reproduce the socio-economic aspects of the region. The families generated by means of a software are placed on the virtual world by associating them with the buildings. These buildings are acquired by analysing the vector data of regional buildings made available by the region. Each year, the model determines the level of diffusion by simulating the installed capacity. The adoption behaviour is influenced by social interactions, household’s economic situation, the environmental benefits arising from the adoption and the payback period of the investment.