1000 resultados para Compostos secundários


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O buriti (Mauritia flexuosa L.) é um fruto rico em carotenoides, ácidos graxos e compostos fenólicos com grande potencial de industrialização. Entretanto, sua vida útil reduzida dificulta a comercialização e um maior aproveitamento. Dessa forma, tecnologias de processamento podem ser empregadas para que haja maior utilização e expansão do buriti. Este trabalho teve como objetivo caracterizar polpa de buriti congelada, liofilizada e atomizada, quantificando os compostos bioativos (carotenoides e ácidos graxos), a composição centesimal e mineral, além de avaliar a estabilidade química e funcional da polpa submetida a esses tratamentos ao longo do tempo de armazenamento. Polpas de buriti oriunda da Comunidade Boa Vista, zona rural do município de Arinos, MG, foram submetidas a três processamentos: congelamento (eleito como controle), liofilização e atomização (com adição de maltodextrina como coadjuvante de tecnologia). Após o processamento, as polpas foram acondicionadas em embalagens laminadas compostas por poliéster, alumínio e polietileno (25 x 25 cm), com capacidade para 100 g cada, e armazenadas a -23 °C para o congelamento e a temperatura ambiente para as polpas desidratadas. As análises físicas, químicas, nutricionais e funcionais foram realizadas logo após o processamento, para caracterização das polpas e nos períodos: 1, 14, 28, 42 e 56 dias, para avaliação da estabilidade. O delineamento experimental empregado constituiu-se de dois fatores (processamento e período) e a interação entre eles. Os dados foram analisados estatisticamente por meio da Análise de Variância Univariada (ANOVA) com nível de significância de 5 %. Constatou-se que durante a estocagem a polpa liofilizada apresentou maior brilho, menor opacidade, valores inferiores para o pH, menor variação da atividade de água e maior acidez titulável. Esses parâmetros são importantes indicadores de qualidade da polpa durante a sua estocagem, visto que dificultam o desenvolvimento microbiano. A adição da maltodextrina no processo de atomização acarretou maiores teores de sólidos solúveis em relação aos demais tratamentos. Os resultados demonstraram que, ao longo do armazenamento, a liofilização contribuiu para a melhor preservação dos carotenoides totais. A quantificação dos carotenoides e dos ácidos graxos na polpa congelada demonstrou que houve melhor preservação de carotenoides do tipo alfa e beta caroteno, dos ácidos graxos oleico, indicando maior valor nutricional para a alimentação humana. Apesar dos resultados satisfatórios para a polpa congelada, durante o tempo analisado a polpa congelada apresentou maiores perdas em relação à polpa liofilizada. Para a classe dos compostos fenólicos, a liofilização apresentou melhores resultados ao longo da estocagem. O uso de baixas temperaturas foi mais efetivo para a preservação dos compostos bioativos analisados. Portanto, pode-se concluir que o emprego da liofilização é a alternativa mais adequada entre as avaliadas, para o aproveitamento da polpa de buriti na indústria de alimentos, uma vez que esse tratamento preservou todos os constituintes avaliados durante a estocagem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diversas classes de compostos orgânicos de telúrio foram exploradas neste trabalho. Inicialmente foi estudada a transmetalação entre teluretos alílicos e dibutil cianocupratos de lítio de ordem superior, levando aos respectivos cianocupratos alílicos de lítio. Estes, por sua vez, foram acoplados com triflatos vinílicos, importantes intermediários sintéticos preparados previamente a partir de teluretos vinílicos, levando a sistemas altamente insaturados em ótimos rendimentos (Esquema 1). (Ver no arquivo em PDF) Em seguida, foi explorada a reatividade de teluretos aromáticos frente a reagentes organometálicos. Cianocupratos arílicos, gerados a partir da transmetalação entre teluretos aromáticos com cianocupratos de lítio de ordem superior, foram adicionados a cetonas α,β -insaturadas, levando aos produtos de adição 1,4 em bons rendimentos (Esquema 2). (Ver no arquivo em PDF) Teluretos vinílicos funcionalizados de configuração Z também foram alvo de estudo visando a formação de ligação carbono-carbono. Reações de substituição entre estes teluretos e cianocupratos de lítio de ordem inferior levaram a cetonas e ésteres α,β- insaturados com estereoquímica defInida em ótimos rendimentos (Esquema 3). (Ver no arquivo em PDF) De agosto/20OJ a março/2004, a aluna realizou um estágio sanduíche na University of California, Santa Barbara, sob a orientação do Prof. Bruce H. Lipshutz, onde realizou estudos sobre a ciclização de Bergman, visando a síntese do fragmentobiarílico A-B da vancornicina. Diversas condições para a ciclização foram estudadas com um composto modelo (Esquema 4) (Ver no arquivo em PDF) e parte da síntese total do fragmento da vancomlcma, onde a ciclização seria a etapa-chave, foi realizada com sucesso (Esquema 5). (Ver no arquivo em PDF)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Terminalia catappa Linn belonging to Combretaceae family, popularly known as castanets, has fruits consists of a fleshy pulp, rounded seed and a very hard shell. The natural pigmentation existing in the fruit of castanet indicates the presence of anthocyanins, phenolic nature components belonging to the group of flavonoids, which have antioxidant activity. This research was conducted with the castanets and aimed to the study of factors influencing the extraction of dyes from its pulp. The extracts were obtained using a reactor enjaquetado by solid-liquid extraction. The factors were evaluated as temperature, time, solvent ratio and pH extraction. Adopting a factorial design of 24 , with 4 repetitions at the central point, the effects of these factors on the extraction process were analyzed using Statistica 7.0 software. The antioxidant activity (AA), the content of phenolic compounds (CFT) and the total monomeric anthocyanin content (AMT) were evaluated as response variables planning. Statistical analysis of the results, the effects that influenced the extraction were different for each response (CFT, AMT and AA). However, the pH was significant for the extraction of all compounds. The kinetic behavior of the dye extraction was also studied for phenolic compounds, monomeric anthocyanins and antioxidant activity, in which the equilibrium was reached after 90 minutes of extraction. To study the stability of anthocyanins temperature was the factor that most influenced the stability, however the concentration and pH also played a part.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to promote the synthesis, characterization and propose a plausible molecular structure for coordination compounds involving furosemide (4-Chloro-2-(2- furylmethylamino)-5-sulfamoyl-benzoic acid) with the metal ions Ni+2, Zn+2 and Co+2. The compounds were obtained in methanoic medium by evaporation of the solvent after the synthesis procedure. For characterization of coordination compounds determining the levels of metals by EDTA complexometry, infrared spectroscopy (FTIR), solubility of compounds in various solvents, thermogravimetry (TG), differential scanning calorimetry (DSC), differential thermal analysis were made (DTA), determination of the carbon , hydrogen and nitrogen (CHN). The results of infrared spectroscopy in the region suggest that the organic ligand is coordinated in a bidentate fashion to the metal ions, the metal center interactions to occur by the coordination of the nitrogen atom of the amino group and the oxygen atom of the carboxylic acid of the structure of furosemide. With the results of the levels of metal, elemental analysis (CHN) and thermal analysis has been possible to propose the structure of the ligand. The values of the molar conductivity of the complex in acetonitrile behavior suggest the non acetonitrile electrolyte solution. With the solubility tests it was found that the compounds have high solubility in methanol and acetonitrile, as are partially insoluble in water. From the results of thermal analysis (TG, DSC, DTA), it was possible to obtain the thermal behavior of the compounds as stages of dehydration, thermal stability, decomposition and the energies involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of emerging interest microcontaminants in environmental samples of surface water, groundwater, drinking water, wastewater and effluents from water and sewage treatment plants (WTP and STP), in many countries, suggests these pollutants are widespread in the environment, mainly in urban areas. This is a reason for great concern, since many of these compounds are potentially harmful for humans other living beings, and they are not efficiently removed in the majority of WTP and STP, which is exacerbated by precariousness of water supply and sanitation services. In Natal, like other Brazilian cities, the sewage system serves only part of the urban area (about 30%), so that the rest of the wastewater is infiltrated in the sandy soil of the region in cesspool-dry well systems. This has resulted in contamination of groundwater in the area (sand-dune barrier aquifer, which supplies more than 50% of the city population), which has been observed by the increase in nitrate concentration in supply wells. The vulnerability of the sanddune barrier aquifer, combined with reports of the presence of emerging interest microcontaminants in Brazil and worldwide, led to this research, which investigated the occurrence of fifteen microcontaminants in Natal groundwater and sewage. Samples were collected at five wells used for water supply, the raw sewage and the effluents from biological reactors from STP (UASB and activated sludge reactors). Two samples of each sample were taken, with one week apart between the samples. To determine the contaminants, extraction of aquifer water, and raw and treated sewage samples were performed, through the technique of using SPE Strata X cartridge (Phenomenex®) to the aquifer water, and Strata SAX and Strata X (Phenomenex® ) for samples of raw and treated sewage. Subsequently the extracts were analyzed using GC-MS technique. Much of the analyzed microcontaminants were detected in groundwater and sewage. The concentrations in groundwater are generally lower than those found in the sewers. Some of the compounds (estrone, estradiol, bisphenol A, caffeine, diclofenac, naproxen, paracetamol and ibuprofen) are partially removed at STP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of electrical resistivity, magnetic susceptibility, specific heat and x-ray absorption spectroscopy measurements in Tb1−xYxRhIn5 (x = 0.00, 0.15, 0.4.0, 0.50 e 0.70) single crystals. Tb1−xYxRhIn5 is an antiferromagnetic AFM compound with ordering temperature TN ≈ 46 K, the higher TN within the RRhIn5 serie (R : rare earth). We evaluate the physical properties evolution and the supression of the AFM state considering doping and Crystalline Electric Field (CEF) effects on magnetic exchange interaction between Tb3+ magnetic ions. CEF acts like a perturbation potential, breaking the (2J + 1) multiplet s degeneracy. Also, we studied linear-polarization-dependent soft x-ray absorption at Tb M4 and M5 edges to validate X-ray Absorption Spectroscopy as a complementary technique in determining the rare earth CEF ground state. Samples were grown by the indium excess flux and the experimental data (magnetic susceptibility and specific heat) were adjusted with a mean field model that takes account magnetic exchange interaction between first neighbors and CEF effects. XAS experiments were carried on Total Electron Yield mode at Laborat´onio Nacional de Luz S´ıncrotron, Campinas. We measured X-ray absorption at Tb M4,5 edges with incident polarized X-ray beam parallel and perpendicular to c-axis (E || c e E ⊥ c). The mean field model simulates the mean behavior of the whole system and, due to many independent parameters, gives a non unique CEF scheme. XAS is site- and elemental- specific technique and gained the scientific community s attention as complementary technique in determining CEF ground state in rare earth based compounds. In this work we wil discuss the non conclusive results of XAS technique in TbRhIn5 compounds.