914 resultados para Composites. Nickel. Carbides. Granulation. Sintering and plasma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The steroidogenic acute regulatory protein (StAR) transports cholesterol to the mitochondria for steroidogenesis. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH) which is characterized by impaired synthesis of adrenal and gonadal steroids causing adrenal insufficiency, 46,XY disorder of sex development (DSD) and failure of pubertal development. Partial loss of StAR activity may cause adrenal insufficiency only. PATIENT A newborn girl was admitted for mild dehydration, hyponatremia, hyperkalemia and hypoglycaemia and had normal external female genitalia without hyperpigmentation. Plasma cortisol, 17OH-progesterone, DHEA-S, androstendione and aldosterone were low, while ACTH and plasma renin activity were elevated, consistent with the diagnosis of primary adrenal insufficiency. Imaging showed normal adrenals, and cytogenetics revealed a 46,XX karyotype. She was treated with fluids, hydrocortisone and fludrocortisone. DESIGN, METHODS AND RESULTS Genetic studies revealed a novel homozygous STAR mutation in the 3' acceptor splice site of intron 4, c.466-1G>A (IVS4-1G>A). To test whether this mutation would affect splicing, we performed a minigene experiment with a plasmid construct containing wild-type or mutant StAR gDNA of exons-introns 4-6 in COS-1 cells. The splicing was assessed on total RNA using RT-PCR for STAR cDNAs. The mutant STAR minigene skipped exon 5 completely and changed the reading frame. Thus, it is predicted to produce an aberrant and shorter protein (p.V156GfsX19). Computational analysis revealed that this mutant protein lacks wild-type exons 5-7 which are essential for StAR-cholesterol interaction. CONCLUSIONS STAR c.466-1A skips exon 5 and causes a dramatic change in the C-terminal sequence of the protein, which is essential for StAR-cholesterol interaction. This splicing mutation is a loss-of-function mutation explaining the severe phenotype of our patient. Thus far, all reported splicing mutations of STAR cause a severe impairment of protein function and phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10−12). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the ‘intermediate phenotype’ nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host–pathogen interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study with 40 multiparous high yielding dairy cows was conducted to investigate the influence of an induced negative energy balance (NEB) on reproductive performance. Energy restriction of 49% was performed for 3 weeks beginning on oestrous cycle day 12 of first oestrous cycle after day 85 post partum (pp). From day 20 to day 150 pp animals were monitored for ovary activity three times weekly using rectal palpation and transrectal ultrasound scanning and were inseminated around day 150 pp. Additionally, milk progesterone and milk hydrocortisone were analyzed twice a week. Body condition score and body weight as well as blood glucose, plasma nonesterified fatty acids and plasma β-hydroxybutyrate were recorded weekly. According to oestrous cycle activity before (Period 1 = natural energy deficiency), during (Period 2) and after (Period 3) induced energy restriction animals were assigned to the following groups: Delayed first ovulation until day 45 pp, normal oestrous cycle, prolonged oestrous cycle and shortened oestrous cycle. Sporadic significances, but no clear effect of the metabolic state on reproductive performance could be found during Periods 1 and 2. Service success and conception rate were also not influenced. Our results demonstrate a remarkable adaptation of reproductive activity to metabolic challenges. Animals were able to compensate natural NEB in Period 1 as well as induced NEB (Period 2) for preventing metabolic disorders and maintaining reproductive activity. Therefore dietary energy availability had no effect on reproductive performance at more than 85 days in milk in the present study. To understand reproductive failures in dairy cows focus should be laid on genetic disposition of high yielding individuals that cope successful with metabolic challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control of metabolic pathways is a major task of the somatotropic axis and its constituents. Insulinlike growth-factor binding proteins (IGFBPs) bind IGF-I and -II and act as carriers and regulators of their activities in blood, body fluids and tissues. Over two periods of physiological adaptation, this study investigated the binding pattern of IGF-I to IGFBPs in the plasma of 50 multiparous Holstein dairy cows and identified relationships with the hepatic mRNA abundance of IGFBPs and plasma IGF-I during the lactational negative energy balance (NEB) and during a deliberately induced NEB by feed restriction. Period 1 lasted from week 3 antepartum (a.p.) to week 12 postpartum (p.p.) and period 2, the period of feed restriction, started at around 100 DIM and lasted for three weeks with a control (C) and a restricted group (R). Blood samples and liver biopsies were collected in week 3 a.p., and in weeks 1 and 4 p.p. of period 1 and in weeks 0 and 3 of period 2. For column chromatography of IGFBPs, plasma samples of all animals were pooled by group and time points of sampling. Plasma IGF-I dropped from week 3 a.p. to week 1 p.p. and thereafter increased until week 0 (period 2) and did not change up to week 3 of period 2. The binding of IGF-I to plasma IGFBP-1 and -2 increased in period 1 from week 3 a.p. to week 4 p.p., while at the same time it decreased for IGFBP-3. During period 2, the binding of IGF-I to plasma IGFBP-1 and -2 decreased for both groups, but less for R cows. In C cows, the IGF-I binding to IGFBP-3 in plasma increased from week 0 to week 3 of period 2, whereas R cows showed a slight decrease. In period 1, hepatic mRNA abundance of IGFBP-3 followed the plasma IGFBP-3 binding in contrast to the mRNA abundances of IGFBP-1 and -2. The latter increased from week 3 a.p. to week 1 p.p. and decreased afterwards whereas IGF-I binding to IGFBP-1 and -2 increased. In week 3 of period 2, the binding of IGF-I to IGFBP-1 and -2 and their hepatic mRNA abundance were higher in R cows compared to C cows. Hepatic mRNA abundance of IGF-I was consistently positively correlated with plasma IGF-I, especially pronounced during the NEBs in week 1 p.p. (period 1) and in week 3 (period 2) in R cows. While no distinct relation between mRNA abundance of IGFBP-1 and plasma IGF-I was evident, the mRNA abundance of IGFBP-2 was inversely related to plasma IGF-I over all experimental time points independent of treatment. The mRNA abundance of IGFBP-3 was particularly correlated with plasma IGF-I during the 2 experimental stages of a NEB. Obviously IGFBP-3, but not IGFBP-1 and -2, binding in plasma closely followed the respective pattern of hepatic mRNA abundance during the entire experimental period. The fact that changes in the different plasma IGFBPs during altering metabolic stages in different stages of lactation do not always strictly follow their mRNA abundance in liver suggests tissues other than the liver flexibly contributing to the IGFBP pool in plasma as well as a partially post-transcriptional regulation of IGFBP synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurotensin(8-13) (NTS(8-13)) analogs with C- and/or N-terminal β-amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1-6). A virtual docking experiment showed almost perfect fit of one of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives, 6a, into a crystallographically identified receptor NTSR1 (Fig.1). The affinities for the receptors of the NTS analogs and derivatives are low, when determined with cell-membrane homogenates, while, with NTSR1-exhibiting cancer tissues, affinities in the single-digit nanomolar range can be observed (Table 2). Most of the β-amino acid-containing NTS(8-13) analogs (Table 1 and Fig.2), including the (68) Ga complexes of the DOTA-substituted ones (6; Figs.2 and 5), are stable for ca. 1 h in human serum and plasma, and in murine plasma. The biodistributions of two (68) Ga complexes (of 6a and 6b) in HT29 tumor-bearing nude mice, in the absence and in the presence of a blocking compound, after 10, 30, and 60 min (Figs. 3 and 4) lead to the conclusion that the amount of specifically bound radioligand is rather low. This was confirmed by PET-imaging experiments with the tumor-bearing mice (Fig.6). Comparison of the in vitro plasma stability (after 1 h) with the ex vivo blood content (after 10-15 min) of the two (68) Ga complexes shows that they are rapidly cleaved in the animals (Fig.5).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brushite and octacalcium phosphate (OCP) crystals are well-known precursors of hydroxylapatite (HAp), the main mineral found in bone. In this report, we present a new method for biomimicking brushite and OCP using single and double diffusion techniques. Brushite and OCP crystals were grown in an iota-carrageenan gel. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed different morphologies of brushite crystals from highly porous aggregates to plate-shaped forms. OCP crystals grown in iota-carrageenan showed a porous spherical shape different from brushite growth forms. The XRD method demonstrated that the single-diffusion method favors the formation of monoclinic brushite. In contrast, the double diffusion method was found to promote the formation of the triclinic octacalcium phosphate OCP phase. By combining the different parameters for crystal growth in carrageenan, such as ion concentration, gel pH and gel density, it is possible to modify the morphology of composite crystals, change the phase of calcium phosphate and modulate the amount of carrageenan inclusion in crystals. This study suggests that iota-carrageenan is a high-molecular-weight polysaccharide that is potentially applicable for controlling calcium phosphate crystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer implants are interesting alternatives to the contemporary load-bearing implants made from metals. Polyetheretherketone (PEEK), a well-established biomaterial for example, is not only iso-elastic to bone but also permits investigating the surrounding soft tissues using magnetic resonance imaging or computed tomography, which is particularly important for cancer patients. The commercially available PEEK bone implants, however, require costly coatings, which restricts their usage. As an alternative to coatings, plasma activation can be applied. The present paper shows the plasma-induced preparation of nanostructures on polymer films and on injection-molded micro-cantilever arrays and the associated chemical modifications of the surface. In vitro cell experiments indicate the suitability of the activation process. In addition, we show that microstructures such as micro-grooves 1 μm deep and 20 μm wide cause cell alignment. The combination of micro-injection molding, simultaneous microstructuring using inserts/bioreplica and plasma treatments permits the preparation of polymer implants with nature-analogue, anisotropic micro- and nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carcinogenic activity of water-insoluble crystalline nickel sulfide requires phagocytosis and lysosome-mediated intracellular dissolution of the particles to yield Ni('2+). This study investigated the extent and nature of the DNA damage in Chinese hamster ovary cells treated with various nickel compounds using the technique of alkaline elution. Crystalline NiS and water-soluble NiCl(,2) induced single strand breaks that were repaired quickly and DNA-protein crosslinks that persisted up to 24 hr after exposure to nickel. The induction of single strand breaks was concentration dependent at both noncytotoxic and lethal amounts of nickel. The induction of DNA-protein crosslinks was concentration dependent but was absent at lethal amounts of nickel. The cytoplasmic and nuclear uptake of nickel was concentration dependent even at the toxic level of nickel. However, the induction of DNA-protein crosslinks by nickel required active cell cycling and occurred predominantly in mid-late S phase of the cell cycle, suggesting that the lethal amounts of nickel inhibited DNA-protein crosslinking by inhibiting active cell cycling. Since the DNA-protein crosslinking induced by nickel was resistant to DNA repair, the nature of this lesion was investigated using various methods of DNA isolation and chromatin fractionation in combination with SDS-polyacrylamide gel electrophoresis. High molecular weight, non-histone chromosomal proteins and possibly histone 1 were preferentially crosslinked to DNA by nickel. The crosslinked proteins were concentrated in a magnesium-insoluble fraction of sonicated chromatin (5% of the total) that was similar to heterochromatin in solubility and protein composition. Alterations in DNA structure and function, brought about by the effect of nickel on protein-DNA interactions, may be related to the carcinogenicity of nickel compounds. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search for long-lived particles is performed using a data sample of 4.7 fb(-1) from proton-proton collisions at a centre-of-mass energy. root s = 7 TeV collected by the ATLAS detector at the LHC. No excess is observed above the estimated background and lower limits, at 95% confidence level, are set on the mass of the long-lived particles in different scenarios, based on their possible interactions in the inner detector, the calorimeters and the muon spectrometer. Long-lived staus in gauge-mediated SUSY-breaking models are excluded up to a mass of 300 GeV for tan beta = 5-20. Directly produced long-lived sleptons are excluded up to a mass of 278 GeV. R-hadrons, composites of gluino (stop, sbottom) and light quarks, are excluded up to a mass of 985 GeV (683 GeV, 612 GeV) when using a generic interaction model. Additionally two sets of limits on R-hadrons are obtained that are less sensitive to the interaction model for R-hadrons. One set of limits is obtained using only the inner detector and calorimeter observables, and a second set of limits is obtained based on the inner detector alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ketamine and norketamine are being transported across the blood brain barrier and are also entering from blood into cerebrospinal fluid (CSF). Enantioselective distributions of these compounds in brain and CSF have never been determined. The enantioselective CE based assay previously developed for equine plasma was adapted to the analysis of these compounds in equine brain via use of an acidic pre-extraction of interferences prior to liquid/liquid extraction at alkaline pH. CSF can be treated as plasma. With 100 mg of brain tissue and 0.5 mL of CSF or plasma, assay conditions for up to 30 nmol/g and 6 μM, respectively, of each enantiomer with LOQs of 0.5 nmol/g and 0.1 μM, respectively, were established and the assays were applied to equine samples. CSF and plasma samples analyzed stemmed from anesthetized patient horses and brain, CSF and plasma were obtained from anesthetized horses that were euthanized with an overdose of pentobarbital. Data obtained indicate that ketamine and norketamine enantiomers are penetrating into brain and CSF with those of ketamine being more favorably transported than norketamine, whereas metabolites of norketamine are hindered. More work is required to properly investigate possible stereoselectivities of the ketamine metabolism and transport of metabolites from blood into brain tissue and CSF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute psychosocial stress stimulates transient increases in circulating pro-inflammatory plasma cytokines, but little is known about stress effects on anti-inflammatory cytokines or underlying mechanisms. We investigated the stress kinetics and interrelations of pro- and anti-inflammatory measures on the transcriptional and protein level. Forty-five healthy men were randomly assigned to either a stress or control group. While the stress group underwent an acute psychosocial stress task, the second group participated in a non-stress control condition. We repeatedly measured before and up to 120min after stress DNA binding activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, whole-blood mRNA levels of NF-κB, its inhibitor IκBα, and of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6, and the anti-inflammatory cytokine IL-10. We also repeatedly measured plasma levels of IL-1ß, IL-6, and IL-10. Compared to non-stress, acute stress induced significant and rapid increases in NF-κB-BA and delayed increases in plasma IL-6 and mRNA of IL-1ß, IL-6, and IκBα (p's<.045). In the stress group, significant increases over time were also observed for NF-κB mRNA and plasma IL-1ß and IL-10 (p's<.055). NF-κB-BA correlated significantly with mRNA of IL-1β (r=.52, p=.002), NF-κB (r=.48, p=.004), and IκBα (r=.42, p=.013), and marginally with IL-6 mRNA (r=.31, p=.11). Plasma cytokines did not relate to NF-κB-BA or mRNA levels of the respective cytokines. Our data suggest that stress induces increases in NF-κB-BA that relate to subsequent mRNA expression of pro-inflammatory, but not anti-inflammatory cytokines, and of regulatory-cytoplasmic-proteins. The stress-induced increases in plasma cytokines do not seem to derive from de novo synthesis in circulating blood cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM Decreased DPD activity is a major cause of 5-fluorouracil (5-FU) toxicity, but known reduced-function variants in the DPD gene (DPYD) explain only a part of DPD-related 5-FU toxicities. Here, we evaluated the baseline (pretherapeutic) plasma 5,6-dihydrouracil:uracil (UH2:U) ratio as a marker of DPD activity in the context of DPYD genotypes. MATERIALS & METHODS DPYD variants were genotyped and plasma U, UH2 and 5-FU concentrations were determined by liquid chromatography-tandem mass spectrometry in 320 healthy blood donors and 28 cancer patients receiving 5-FU-based chemotherapy. RESULTS Baseline UH2:U ratios were strongly correlated with generally low and highly variable U concentrations. Reduced-function DPYD variants were only weakly associated with lower baseline UH2:U ratios. However, the interindividual variability in the UH2:U ratio was reduced and a stronger correlation between ratios and 5-FU exposure was observed in cancer patients during 5-FU administration. CONCLUSION These results suggest that the baseline UH2:U plasma ratio in most individuals reflects the nonsaturated state of DPD and is not predictive of decreased DPD activity. It may, however, be highly predictive at increased substrate concentrations, as observed during 5-FU administration.