807 resultados para Composite laminates
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study was intended to quantify the marginal leakage of three glass-ionomer-resin composite hybrid materials and compare it with the leakage exhibited by a glass-ionomer cement and a bonded resin composite system. Method and materials: Standardized Class V cavities were prepared on root surfaces of 105 extracted human teeth, randomly assigned to five groups of 21 each, and restored with either Ketac-Fil Aplicap, Z100/Scotchbond Multi-Purpose Plus, Vitremer, Photac-Fil Aplicap, or Dyract. The teeth were thermally stressed for 500 cycles and stained with methylene blue. The microleakage was quantified spectrophotometrically, and the data were statistically analyzed with Friedman's test. Results: There were no significant differences in microleakage among the five groups. Restorations of all tested materials showed some marginal leakage in Class V cavities. Conclusion: The microleakage performance of glass-ionomer-resin composite hybrid materials was similar to those of a conventional glass-ionomer and a bonded resin composite system.
Resumo:
Hybrid composites combining metal plates and laminates with continuous fiber reinforced polymer, called fiber-metal (CHMF), have been particularly attractive for aerospace applications, due mainly to their high mechanical strength and stiffness associated with low density. These laminates (CHMF) consist of a sandwich structure consisting of layers of polymer composites and metal plates, stacked alternately. This setting allows you to combine the best mechanical performance of polymer composites reinforced with long fibers, to the high toughness of metals. Environmental effects should always be considered in the design of structural components, because these materials in applications are submitted to the effects of moisture in the atmosphere, the large cyclical variations of temperature around 82 ° C to -56 ° C, and high effort mechanical. The specimens of fibermetal composite were prepared at EMBRAER with titanium plates and laminates of carbon fiber/epoxy resin. This study aims to evaluate the effect of different environmental conditions (water immersion, hygrothermal chamber and thermal shock) of laminate hybrid titanium/carbon fiber/epoxy resin. The effects of conditioning were evaluated by interlaminar shear tests - ILSS, tensile, and vibration free
Resumo:
This graduation work done study of polyamide 6.6/composite carbon fibres, since its processing, characterization of the main properties. Besides the influence of temperature, UV radiation, salt spray and moisture on the mechanical and viscoelastic behavior. To achieve this goal, the first composite was processed from the heat compression molding using known variables of the process and using the empirical method to find the best value for other parameters. The method processing molding was chosen because it common in composites processing in order to evaluate the influence of crystallinity of the properties that influence the mechanical and viscoelastic behavior laminates. From the obtained laminate specimens were evaluated in weathering, such as: in hygrothermal chamber, UV, salt spray and thermal shock. In another step, the effect produced by these constraints were evaluated by optical microscopy, ultrasound, dynamic mechanical analysis and vibration tests. This project was conducted at the Department of Technology and Materials of UNESP in Guaratingueta, where all the equipment and techniques for the implementation of this project met available. After the tests proved the applicability of the composite polyamide 6.6/carbon fibers in aeronautical applications with resistance the main climatic influences
Resumo:
A novel nanostructured composite, azide copper octa (3-aminopropyl)octasilsesquioxane (ASCA) was incorporated into a graphite paste electrode and the electrochemical studies were conducted with cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E ) = 0.30 V and an irreversible process at 1.1 V (vs Ag/AgCl; NaCl 1.0 mol L-1 ; v = 20 mV s-1 ). The redox couple with (E ) = 0.30V presents an electrocatalytic response for determination of ascorbic acid. The modified electrode gives a linear range from 1.010-4 – 1.010-3 mol L-1 (r = 0.998) for the determination of ascorbic acid with detection limit of 6.910-5 mol L-1 and standard deviation of 2.3% for n = 3 . The amperometric sensitivity was 122.1 mA/mol L-1 for ascorbic acid. The application this electrode was tested and ascorbic acid in three commercial pharmaceutical product (Cebion, Cewin and Redoxon) have been determined.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work describes the production and characterization of a selective membrane useful for electronic devices. The membrane was a composite made by a thin film of plasma-polymerized HFE (methyl nonafluoro(iso)butyl ether) immersed in plasma-polymerized HMDS (hexamethyldisilazane) film, a third phase being 5 µm starch particles included in this matrix. The film was deposited on silicon substrates and its physical, chemical and adsorption characteristics were determined. Infrared and x-ray photoelectron spectroscopy analyses showed fluorine and carboxyl groups on the bulk and the surface, respectively. SEM results indicate the film is conformal even if starch is present. Optical microscopy analysis showed good resistance toward acid and base solutions. Quartz crystal microbalance indicated adsorption of polar organic compounds on ppm range. This thin film is environment-friendly and can be used as a protective layer or in electronic devices due to adsorption of volatile organic compounds.
Resumo:
This work evaluates fluorinated thin films and their composites for sensor development. Composites were produced using 5 µm starch particles and plasma films obtained from organic fluorinated and silicon compounds reactants. Silicon wafers and aluminum trenches were used as substrates. Film thickness, refractive index and chemical structure were also determined. Scanning electron microscopy shows conformal deposition on aluminum trenches. Films deposited on silicon were exposed to vapor of volatile organic compounds and CV curves were obtained. A qualitative model (FemLab 3.2® program) was proposed for the electronic behavior. These environmentally correct films can be used in electronic devices and preferentially reacted to polar compounds. Nonetheless, due to the difficulty in signal recovery, these films are more effective in one-way sensors, in sub-ppm range.
Resumo:
The aim of this work was production of tetraethoxysilane (TEOS) plasma polymerized thin films and optimization of their physical-chemical characteristic for sensor development. The films were analyzed using several techniques. It was possible to produce composites (graphite clusters imbibed by silicon oxide film) made from only one reactant (TEOS). Deposition rate can vary significantly, reaching a maximum of 30 nm/min; cluster formation and their size widely depending on deposition parameters. The film surface was hydrophobic but can be wetted by organic compounds, probably due to carbon radicals. These films are good candidates for sensor development.
Resumo:
To evaluate changes in microhardness, roughness and surface morphology of dental enamel and composite resin after different tooth bleaching techniques. Material and Methods: Dental fragments from bovine incisors with composite resin restorations were submitted to different bleaching protocols: G1 – daily 8 hours application of a 10% carbamide peroxide (CP) gel during 21 days; G2: 3 applications of 15 minutes of a 38% hydrogen peroxide (H2O2) gel; G3: 38% H2O2 gel associated to irradiation with LED (470nm) during 6 minutes. The Knoop micro hardness of enamel and composite resin were evaluated at 1, 7, 14 and 21 days for G1, and after 1, 2 and 3 sessions for G2 and G3. The roughness and superficial morphology (atomic force microscopy) were evaluated before and at the end of the bleaching treatment. The data were analyzed by Mann-Whitney and Wilcoxon tests (=5%). Results: Significant reduction on enamel hardness was observed after 2 and 3 sessions for G2 and G3. For composite, the reduction occurred after 21 days for G1, and after 3 sessions for G2 and G3 (p<0.05). Significant reduction on roughness and superficial morphology were observed only for enamel of G1 group (p<0.05). Conclusion: The 10% CP gel promoted only superficial alterations on dental enamel, while the 38% H2O2 gel promoted mineral reduction of this dental tissue. All the bleaching protocols promoted reduction on hardness of composite resin.
Resumo:
Aim: This case report describe a resin layering restorative technique based on biomimetic concept to improve esthetics in a patient with dental defects that affected both enamel and dentin in anterior teeth. Background: Severe structural defect in anterior teeth compromises esthetics and it is a high challenge to become the defect imperceptible after the restoration. Case description: A clinical sequence of applying different composite resin layers allowed the reproduction of the interaction between hard dental tissues and the restorative material. Conclusion: This technique achieved a satisfactory final esthetic outcome, preserving sound teeth structure and at same time, improved the quality of life of the young patient. Clinical significance: The utilization of the biomimetic concept to increase a disharmonic smile with dental defects is based in a conservative approach, which reached a satisfactory and esthetic outcome.
Resumo:
Patients are seeking increasingly the expertise of dental surgeons for esthetic dental improvement. The dental surgeons should know the restorative materials and techniques in order to optimize the clinical practice and to obtain satisfactory results. Also the dentist should know the average heights and widths of the anterior teeth to detect the esthetic disharmony and to eliminate it for reproducing the correct dental anatomy. Thus, this study aimed to describe a clinical case report of direct restoration using the palatal barrier technique.
Resumo:
Coordenação de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
Resumo:
Objective: This study aims to evaluate the degree of conversion (DC) and hydrolytic degradation through the Vickers hardness test (HV) of a nanofilled (Filtek™ Z-250, 3M) and a microhybrid (Filtek™Supreme-XT, 3M) composite resin. Materials and methods: Eight disk-shaped specimens (4 mm diameter × 2 mm thick, ISO 4049) of each material were prepared for each test. Composites were inserted into single increment in a metallic matrix and light-cured for 40 seconds. VH readings were performed for each specimen at predetermined intervals: immediately after polymerization (control), 1, 2, 3, 7, 14, 21, 30 and 180 days. After curing, initial hardness measurements were performed and the specimens were immersed in artificial saliva at 37°C. For DC (%), specimens were ground, pressed with KBr and analyzed by FT-IR spectrophotometer. Results: Student t-test showed that there was no difference between the resins for DC (p = 0.252). ANOVA analysis revealed that Z-250 VH means were all greater than S-XT, for both top and bottom surfaces, whatever the storage-period in artificial saliva (p < 0.001). After 180 days of storage, the hardness obtained for S-XT was similar with that at the baseline, for both top and bottom surfaces. While for Z-250 hardness was not significantly different from baseline only for top surface, but there was a significant decrease observed in hardness for bottom surface. Conclusion: The materials tested showed no evidence of hydrolytic degradation in a significant way, in a 6-month storagetime in artificial saliva. Nanofilled resin presents a monomer conversion comparable to the conventional microhybrid.
Resumo:
The purpose of this study was to evaluate the compressive strength and color changes of one composite resin modified by TiO2 nanoparticles and their distribution by SEM.