904 resultados para Complex systems
Resumo:
[Excert] Biocatalysis and biotransformations are environmentally friendly, and allow the development of sustainable production processes on a large scale. Thus, these processes are becoming important alternatives to conventional chemistry in the drug, biochemical, and emerging biorenewable energy industries. Biocatalysts are required to function under non-conventional conditions, such as in organic solvents, being competitive in terms of cost and efficiency. In fact, the technological utility of enzymes can be enhanced greatly by using them in the presence of organic solvents, rather than in their natural aqueous reaction media. Multiphase systems are more complex but offer a new field of possibilities. The presence of hydrophobic solvents in biocatalysis allows the conversion of poorly water soluble substrates more efficiently. The accessibility of hydrophobic substrates to enzymes or whole cells presents an interesting challenge for researchers and technologists. In this context, microemulsions are a promising tool in enzyme technology. This chapter presents an overview of the characterization of biphasic and microemulsion systems and their applications in biotransformation processes (...).
Resumo:
IDENTIFICACIÓN DEL PROBLEMA DE ESTUDIO. Las sustancias orgánicas solubles en agua no biodegradables tales como ciertos herbicidas, colorantes industriales y metabolitos de fármacos de uso masivo son una de las principales fuentes de contaminación en aguas subterráneas de zonas agrícolas y en efluentes industriales y domésticos. Las reacciones fotocatalizadas por irradiación UV-visible y sensitizadores orgánicos e inorgánicos son uno de los métodos más económicos y convenientes para la descomposición de contaminantes en subproductos inocuos y/o biodegradables. En muchas aplicaciones es deseable un alto grado de especificidad, efectividad y velocidad de degradación de un dado agente contaminante que se encuentra presente en una mezcla compleja de sustancias orgánicas en solución. En particular son altamente deseables sistemas nano/micro -particulados que formen suspensiones acuosas estables debido a que estas permiten una fácil aplicación y una eficaz acción descontaminante en grandes volúmenes de fluidos. HIPÓTESIS Y PLANTEO DE LOS OBJETIVOS. El objetivo general de este proyecto es desarrollar sistemas nano/micro particulados formados por polímeros de impresión molecular (PIMs) y foto-sensibilizadores (FS). Un PIMs es un polímero especialmente sintetizado para que sea capaz de reconocer específicamente un analito (molécula plantilla) determinado. La actividad de unión específica de los PIMs en conjunto con la capacidad fotocatalizadora de los sensibilizadores pueden ser usadas para lograr la fotodescomposición específica de moléculas “plantilla” (en este caso un dado contaminante) en soluciones conteniendo mezclas complejas de sustancias orgánicas. MATERIALES Y MÉTODOS A UTILIZAR. Se utilizaran técnicas de polimerización en mini-emulsión para sintetizar los sistemas nano/micro PIM-FS para buscar la degradación de ciertos compuestos de interés. Para caracterizar eficiencias, mecanismos y especificidad de foto-degradación en dichos sistemas se utilizan diversas técnicas espectroscópicas (estacionarias y resueltas en el tiempo) y de cromatografía (HPLC y GC). Así mismo, para medir directamente distribuciones de afinidades de unión y eficiencia de foto-degradación se utilizaran técnicas de fluorescencia de molécula/partícula individual. Estas determinaciones permitirán obtener resultados importantes al momento de analizar los factores que afectan la eficiencia de foto-degradación (nano/micro escala), tales como cantidad y ubicación de foto- sensibilizadores en las matrices poliméricas y eficiencia de unión de la plantilla y los productos de degradación al PIM. RESULTADOS ESPERADOS. Los estudios propuestos apuntan a un mejor entendimiento de procesos foto-iniciados en entornos nano/micro-particulados para aplicar dichos conocimientos al diseño de sistemas optimizados para la foto-destrucción selectiva de contaminantes acuosos de relevancia social; tales como herbicidas, residuos industriales, metabolitos de fármacos de uso masivo, etc. IMPORTANCIA DEL PROYECTO. Los sistemas nano/micro-particulados PIM-FS que se propone desarrollar en este proyecto se presentan como candidatos ideales para tratamientos específicos de efluentes industriales y domésticos en los cuales se desea lograr la degradación selectiva de compuestos orgánicos. Los conocimientos adquiridos serán indispensables para construir una plataforma versátil de sistemas foto-catalíticos específicos para la degradación de diversos contaminantes orgánicos de interés social. En lo referente a la formación de recursos humanos, el proyecto propuesto contribuirá en forma directa a la formación de 3 estudiantes de postgrado y 2 estudiantes de grado. En las capacidades institucionales se contribuirá al acondicionamiento del Laboratorio para Microscopía Óptica Avanzada (LMOA) en el Dpto. de Química de la UNRC y al montaje de un sistema de microscopio de fluorescencia que permitirá la aplicación de técnicas avanzadas de espectroscopia de fluorescencia de molecula individual. Water-soluble organic molecules such as certain non-biodegradable herbicides, industrial dyes and metabolites of widespread use drugs are a major source of pollution in groundwater from agricultural areas and in industrial and domestic effluents. Photo-catalytic reactions by UV-visible irradiation and organic sensitizers are one of the most economical and convenient methods for the decomposition of pollutants into harmless byproducts. In many applications it is highly desirable a high degree of specificity, effectiveness and speed of degradation of specific pollutants present in a complex mixture. In particular nano/micro-particles systems that form stable aqueous suspensions are highly desirable because they allow for easy application and effective decontamination of large volumes of fluids. Herein we propose the development of nano/micro particles composed by molecularly imprinted polymers (MIP) and photo-sensitizers (PS). The specific binding of MIP and the photo-catalytic ability of the sensitizers are used to achieve the photo-decomposition of specific "template" molecules in complex mixtures. Mini-emulsion polymerization techniques will be used to synthesize nano/micro MIP-FS systems. Spectroscopy (steady-state and time resolved) and chromatography (GC and HPLC) will be used to characterize efficiency, mechanisms and specificity of photo-degradation in these systems. In addition single molecule/particle fluorescence spectroscopy techniques will be used to directly measure distributions of binding affinities and photo-degradation efficiency in individual particles. The proposed studies point to a more detailed understanding of the factors affecting the photo-degradation efficiency in nano/micro-particles and to apply that knowledge in the design of optimized systems for photo-selective destruction of socially relevant aqueous pollutants.
Resumo:
This project focused on the investigation and the development of a chemical sensing system for the determination of chromium Cr6+ and a bio-reactor followed by electrochemical detection at a glassy carbon electrode, for the determination of organochlorine compounds. The conjugation of Cr6+ with 1,5-diphenylcarbazide was studied at various types of electrodes such as glassy carbon, ultra-trace epoxy-graphite, chemically or un-modified carbon-paste and dropping-mercury. The cyclic voltammetric behaviour of the complex was also investigated. In addition, the possibility of developing a chemical sensor, Le. an electrochemical probe capable of sensing Cr6+ through its complexation with 1,5-diphenylacarbazide was studied. The conjugations of l-chloro-2,4-dinitrobenzene, 2,4-dichloronitrobenzene and ethacrynic, which are electrophilic organochlorine compounds, with reduced glutathione, were studied in order to test the bioreactor developed, based on the immobilisation of glutathione s-transferase. This was carried out at different types of electrodes such as glassy-carbon, gold, silver, platinum, epoxy-graphite, hangingmercury, and ferrocene-modified rotating-disc electrodes.
Resumo:
The purpose of this study was to evaluate the determinism of the AS-lnterface network and the 3 main families of control systems, which may use it, namely PLC, PC and RTOS. During the course of this study the PROFIBUS and Ethernet field level networks were also considered in order to ensure that they would not introduce unacceptable latencies into the overall control system. This research demonstrated that an incorrectly configured Ethernet network introduces unacceptable variable duration latencies into the control system, thus care must be exercised if the determinism of a control system is not to be compromised. This study introduces a new concept of using statistics and process capability metrics in the form of CPk values, to specify how suitable a control system is for a given control task. The PLC systems, which were tested, demonstrated extremely deterministic responses, but when a large number of iterations were introduced in the user program, the mean control system latency was much too great for an AS-I network. Thus the PLC was found to be unsuitable for an AS-I network if a large, complex user program Is required. The PC systems, which were tested were non-deterministic and had latencies of variable duration. These latencies became extremely exaggerated when a graphing ActiveX was included in the control application. These PC systems also exhibited a non-normal frequency distribution of control system latencies, and as such are unsuitable for implementation with an AS-I network. The RTOS system, which was tested, overcame the problems identified with the PLC systems and produced an extremely deterministic response, even when a large number of iterations were introduced in the user program. The RTOS system, which was tested, is capable of providing a suitable deterministic control system response, even when an extremely large, complex user program is required.
Resumo:
As a rule, soils of the subtropical and tropical regions, in which rainfall is not limiting, are acidic, and low in phosphorus, and, to a less extent, in other macro and micronutrients as well, such a sulfur, boron and zinc. The establishment of a permanent agricultural prac. tice therefore, demands relatively high usage of liming and phosphatic fertilization, to begin with. Several approaches, not mutually exclusive, could be used in order to increase the efficiency of utilization of soil and fertilizer phosphorus so that, goal of diminishing costs of production is reached. The use of liming materials bringing up pH to 6.0-6.5 causes the conversion of iron and aluminum phosphates to more available calcium phosphates; on the other hand, by raising calcium saturation in the exchange complex, it improves the development and operation if the root system which allows c or a higher utilization of all soil nutrients, including phosphorus, and helps of stand water deficits which may occur. The role of mycorrhizal fungi should be considered as a way of increasing soil and fertilizer P utilization, as well as the limitations thereof. Screening of and breeding for varieties with higher efficiency of uptake and utilization of soil and fertilizer phosphorus leads to a reduction in cost of inputs and to higher benefit/cost ratios. Corrective fertilization using ground rock phosphate helps to saturate the fixation power of the soil thereby reducing, as a consequence, the need for phosphorus in the maintenance fertilization. Maintenance fertilization, in which soluble phos-phatic sources are used, could be improved by several means whose performance has been proved: limimg, granula tion, placement, use of magnesium salts. Last, cost of phosphate fertilization could be further reduced, without impairing yields, through impairing yields, through changes in technology designed to obtain products better adapted to local conditions and to the availability or raw materials and energy sources.
Resumo:
Six hundred and ninety three male inmates from three penitentiaries, two (A and B) maximum-security systems and one (C) minimum-security facility, located in Campinas, State of São Paulo, Brazil were studied for the presence of human immunodeficiency virus (HIV) antibodies, using a cross-sectional design. The search for anti-HIV antibodies in 693 samples of sera collected was carried out by two serological tests: (a) the Microparticle enzyme immunoassay-HIV-1 and HIV-2 (MEIA) (Abbott Laboratories) and (b) the Western Blot-HIV-1 (WB) (Cambridge Biotech Corporation) to confirm positive results with MEIA. Sera reactivity for HIV antibodies was 14.4%. The highest frequency of anti-HIV antibodies was found in the A and B maximum-security prisons: 17% and 21.5%, respectively. In prison C, the frequency of reagents was 10.9%. Seventy three inmates, initially negative in the MEIA test, were checked again five and seven months later. Three of them, all from the maximum-security facilities, became reactive in the MEIA test, with confirmation in the WB, suggesting that serological conversion had occurred after imprisonment.
Resumo:
Water resources management, as also water service provision projects in developing countries have difficulties to take adequate decisions due to scarce reliable information, and a lack of proper information managing. Some appropriate tools need to be developed in order to improve decision making to improve water management and access of the poorest, through the design of Decision Support Systems (DSS). On the one side, a DSS for developing co-operation projects on water access improvement has been developed. Such a tool has specific context constrains (structure of the system, software requirements) and needs (Logical Framework Approach monitoring, organizational-learning, accountability and evaluation) that shall be considered for its design. Key aspects for its successful implementation have appeared to be a participatory design of the system and support of the managerial positions at the inception phase. A case study in Tanzania was conducted, together with the Spanish NGO ONGAWA – Ingeniería para el Desarrollo. On the other side, DSS are required also to improve decision making on water management resources in order to achieve a sustainable development that not only improves the living conditions of the population in developing countries, but that also does not hinder opportunities of the poorest on those context. A DSS made to fulfil these requirements shall be using information from water resources modelling, as also on the environment and the social context. Through the research, a case study has been conducted in the Central Rift Valley of Ethiopia, an endhorreic basin 160 km south of Addis Ababa. There, water has been modelled using ArcSWAT, a physically based model which can assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time. Moreover, governance on water and environment as also the socioeconomic context have been studied.
Resumo:
In mammalian cells, proper gene regulation is achieved by the complex interplay of transcription factors that activate or repress gene expression by binding to the regulatory regions of target promoters. While transcriptional activators have been extensively characterised and classified into functional groups, relatively little is known about the comparative strength and cell type-specificity of transcriptional repressors. Here, we have compared the ability of a series of eukaryotic repression domains to silence basal and activated transcription. A series of the most potent repression domains was further tested in the context of a gene therapy gene-switch system in various cell types. The results indicate that the analysed repression domains exert varying silencing activities in different promoter contexts. Furthermore, their potential for gene silencing varies also depending on the cellular context. When multimerised within one chimeric repressor protein, particular combinations of repressor domains were found to display synergistic repressing effects and efficient repression in a panel of cell lines. This approach thus allowed the identification of transcriptional repressors that are both potent and versatile in terms of cellular specificity as a basis for gene switch systems.
Resumo:
Spectacular shallow-level migmatization of ferrogabbroic rocks occurs in a metamorphic contact aureole of a gabbroic pluton of the Tierra Mala massif (TM) on Fuerteventura (Canary Islands). In order to improve our knowledge of the low pressure melting behavior of gabbroic rocks and to constrain the conditions of migmatization of the TM gabbros, we performed partial melting experiments on a natural ferrogabbro, which is assumed as protolith of the migmatites. The experiments were performed in an internally heated pressure vessel (IHPV) at 200 MPa, 930-1150 degreesC at relatively oxidizing conditions. Distinct amounts of water were added to the charge. From 930 to 1000 degreesC, the observed experimental phases are plagioclase (An(60-70)), clinopyroxene, amphibole (titanian magnesiohastingsites), two Fe-Ti oxides, and a basaltic, K-poor melt. Above 1000 degreesC, amphibole is no longer stable. The first melts are very rich in non-native plagioclase (>70 wt.%). This indicates that at the beginning of partial melting plagioclase is the major phase which is consumed to produce melt. In the experiments, plagioclase is stable up to high temperatures (1060 degreesC) showing increasing An content with temperature. This is not compatible with the natural migmatites, in which An-rich plagioclase is absent in the melanosomes, while amphibole is stable. Our results show that the partial melting of the natural rocks cannot be regarded as an ``in-situ'' process that occurred in a closed system. Considerable amounts of alkalis probably transported by water-rich fluids, derived from the mafic pluton underplating the TM gabbro, were necessary to drive the melting reaction out of the stability range of plagioclase. A partial melting experiment with a migmatite gabbro showing typical ``in-situ'' textures as starting material supports this assumption. Crystallization experiments performed at 1000 degreesC on a glass of the fitised ferrogabbro with different water contents added to the charge show that generally high water activities could be achieved (crystallization of amphibole), independently of the bulk water content, even in a system with very low initial bulk water content (0.3 wt.%). Increasing water contents produce plagioclase richer in An, reduces the modal proportion of plagioclase in the crystallizing assemblage and extends the melt fraction. High melt fractions of >30 wt.% could only be observed in systems with high bulk water contents (> - 2 wt.%). This indicates that the migmatites were generated under water-rich conditions (probably water-saturated), since those migmatites, which are characterized as ``in-situ'' formations, show generally high amounts of leucosomes (>30 wt.%). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Expert supervision systems are software applications specially designed to automate process monitoring. The goal is to reduce the dependency on human operators to assure the correct operation of a process including faulty situations. Construction of this kind of application involves an important task of design and development in order to represent and to manipulate process data and behaviour at different degrees of abstraction for interfacing with data acquisition systems connected to the process. This is an open problem that becomes more complex with the number of variables, parameters and relations to account for the complexity of the process. Multiple specialised modules tuned to solve simpler tasks that operate under a co-ordination provide a solution. A modular architecture based on concepts of software agents, taking advantage of the integration of diverse knowledge-based techniques, is proposed for this purpose. The components (software agents, communication mechanisms and perception/action mechanisms) are based on ICa (Intelligent Control architecture), software middleware supporting the build-up of applications with software agent features
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
Background: To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results: To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions: We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
Resumo:
CSCL applications are complex distributed systems that posespecial requirements towards achieving success in educationalsettings. Flexible and efficient design of collaborative activitiesby educators is a key precondition in order to provide CSCL tailorable systems, capable of adapting to the needs of eachparticular learning environment. Furthermore, some parts ofthose CSCL systems should be reused as often as possible inorder to reduce development costs. In addition, it may be necessary to employ special hardware devices, computational resources that reside in other organizations, or even exceed thepossibilities of one specific organization. Therefore, theproposal of this paper is twofold: collecting collaborativelearning designs (scripting) provided by educators, based onwell-known best practices (collaborative learning flow patterns) in a standard way (IMS-LD) in order to guide the tailoring of CSCL systems by selecting and integrating reusable CSCL software units; and, implementing those units in the form of grid services offered by third party providers. More specifically, this paper outlines a grid-based CSCL system having these features and illustrates its potential scope and applicability by means of a sample collaborative learning scenario.
Resumo:
The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.