960 resultados para Competing risks, Estimation of predator mortality, Over dispersion, Stochastic modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper three problems related to the analysis of facial images are addressed: the illuminant direction, the compensation of illumination effects and, finally, the recovery of the pose of the face, restricted to in-depth rotations. The solutions proposed for these problems rely on the use of computer graphics techniques to provide images of faces under different illumination and pose, starting from a database of frontal views under frontal illumination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a new method for motion estimation and 3D reconstruction from stereo image sequences obtained by a stereo rig moving through a rigid world. We show that given two stereo pairs one can compute the motion of the stereo rig directly from the image derivatives (spatial and temporal). Correspondences are not required. One can then use the images from both pairs combined to compute a dense depth map. The motion estimates between stereo pairs enable us to combine depth maps from all the pairs in the sequence to form an extended scene reconstruction and we show results from a real image sequence. The motion computation is a linear least squares computation using all the pixels in the image. Areas with little or no contrast are implicitly weighted less so one does not have to explicitly apply a confidence measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A.-P. Cherng, F. Ouyang, L. Blot and R. Zwiggelaar, 'An estimation of firmness for solid ellipsoidal fruits', Biosystems Engineering 91 (2), 257-259 (2005)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infantolino, B., Gales, D., Winter, S., Challis, J., The validity of ultrasound estimation of muscle volumes, Journal of applied biomechanics, ISSN 1065-8483, Vol. 23, N?. 3, 2007 , pags. 213-217 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the asymptotic properties of nonlinear least squares estimators of the long run parameters in a bivariate unbalanced cointegration framework. Unbalanced cointegration refers to the situation where the integration orders of the observables are different, but their corresponding balanced versions (with equal integration orders after filtering) are cointegrated in the usual sense. Within this setting, the long run linkage between the observables is driven by both the cointegrating parameter and the difference between the integration orders of the observables, which we consider to be unknown. Our results reveal three noticeable features. First, superconsistent (faster than √ n-consistent) estimators of the difference between memory parameters are achievable. Next, the joint limiting distribution of the estimators of both parameters is singular, and, finally, a modified version of the ‘‘Type II’’ fractional Brownian motion arises in the limiting theory. A Monte Carlo experiment and the discussion of an economic example are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A specialized formulation of Azarbayejani and Pentland's framework for recursive recovery of motion, structure and focal length from feature correspondences tracked through an image sequence is presented. The specialized formulation addresses the case where all tracked points lie on a plane. This planarity constraint reduces the dimension of the original state vector, and consequently the number of feature points needed to estimate the state. Experiments with synthetic data and real imagery illustrate the system performance. The experiments confirm that the specialized formulation provides improved accuracy, stability to observation noise, and rate of convergence in estimation for the case where the tracked points lie on a plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard structure from motion algorithms recover 3D structure of points. If a surface representation is desired, for example a piece-wise planar representation, then a two-step procedure typically follows: in the first step the plane-membership of points is first determined manually, and in a subsequent step planes are fitted to the sets of points thus determined, and their parameters are recovered. This paper presents an approach for automatically segmenting planar structures from a sequence of images, and simultaneously estimating their parameters. In the proposed approach the plane-membership of points is determined automatically, and the planar structure parameters are recovered directly in the algorithm rather than indirectly in a post-processing stage. Simulated and real experimental results show the efficacy of this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For two multinormal populations with equal covariance matrices the likelihood ratio discriminant function, an alternative allocation rule to the sample linear discriminant function when n1 ≠ n2 ,is studied analytically. With the assumption of a known covariance matrix its distribution is derived and the expectation of its actual and apparent error rates evaluated and compared with those of the sample linear discriminant function. This comparison indicates that the likelihood ratio allocation rule is robust to unequal sample sizes. The quadratic discriminant function is studied, its distribution reviewed and evaluation of its probabilities of misclassification discussed. For known covariance matrices the distribution of the sample quadratic discriminant function is derived. When the known covariance matrices are proportional exact expressions for the expectation of its actual and apparent error rates are obtained and evaluated. The effectiveness of the sample linear discriminant function for this case is also considered. Estimation of true log-odds for two multinormal populations with equal or unequal covariance matrices is studied. The estimative, Bayesian predictive and a kernel method are compared by evaluating their biases and mean square errors. Some algebraic expressions for these quantities are derived. With equal covariance matrices the predictive method is preferable. Where it derives this superiority is investigated by considering its performance for various levels of fixed true log-odds. It is also shown that the predictive method is sensitive to n1 ≠ n2. For unequal but proportional covariance matrices the unbiased estimative method is preferred. Product Normal kernel density estimates are used to give a kernel estimator of true log-odds. The effect of correlation in the variables with product kernels is considered. With equal covariance matrices the kernel and parametric estimators are compared by simulation. For moderately correlated variables and large dimension sizes the product kernel method is a good estimator of true log-odds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical modeling of high-frequency currency market data reveals substantial evidence for nonnormality, stochastic volatility, and other nonlinearities. This paper investigates whether an equilibrium monetary model can account for nonlinearities in weekly data. The model incorporates time-nonseparable preferences and a transaction cost technology. Simulated sample paths are generated using Marcet's parameterized expectations procedure. The paper also develops a new method for estimation of structural economic models. The method forces the model to match (under a GMM criterion) the score function of a nonparametric estimate of the conditional density of observed data. The estimation uses weekly U.S.-German currency market data, 1975-90. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides a root-n consistent, asymptotically normal weighted least squares estimator of the coefficients in a truncated regression model. The distribution of the errors is unknown and permits general forms of unknown heteroskedasticity. Also provided is an instrumental variables based two-stage least squares estimator for this model, which can be used when some regressors are endogenous, mismeasured, or otherwise correlated with the errors. A simulation study indicates that the new estimators perform well in finite samples. Our limiting distribution theory includes a new asymptotic trimming result addressing the boundary bias in first-stage density estimation without knowledge of the support boundary. © 2007 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical model was developed to describe in-canopy vertical distribution of ammonia (NH(3)) sources and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy mean NH(3) concentration and wind speed profiles. This model was applied to quantify in-canopy air-surface exchange rates and above-canopy NH(3) fluxes in a fertilized corn (Zea mays) field. Modeled air-canopy NH(3) fluxes agreed well with independent above-canopy flux estimates. Based on the model results, the urea fertilized soil surface was a consistent source of NH(3) one month following the fertilizer application, whereas the vegetation canopy was typically a net NH(3) sink with the lower portion of the canopy being a constant sink. The model results suggested that the canopy was a sink for some 70% of the estimated soil NH(3) emissions. A logical conclusion is that parametrization of within-canopy processes in air quality models are necessary to explore the impact of agricultural field level management practices on regional air quality. Moreover, there are agronomic and environmental benefits to timing liquid fertilizer applications as close to canopy closure as possible. Finally, given the large within-canopy mean NH(3) concentration gradients in such agricultural settings, a discussion about the suitability of the proposed model is also presented.