966 resultados para Coachable Moments


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In deriving the flamelet model for nonpremixed combustion certain terms, but not the unsteady term, are assumed to be negligible. This results in a relation between all reacting scalars and the mixture fraction as independent variable. An ideal test of the flamelet assumption can be based on direct numerical simulation (DNS) data, if all reacting scalars are conditioned on mixture fraction and conditional moments are evaluated. The fundamental assumption of the flamelet model are unwillingly justified. The unsteady and steady formulations of the same equations are compared and found that unsteadiness is important in an unsteady simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seismic behaviour of anchored sheet pile walls is a complex soil-structure interaction problem. Damaged sheet pile walls are very expensive to repair and their seismic behaviour needs to be investigated in order to understand their possible mechanisms of failure. The research described in this paper involves both centrifuge testing and Finite Element (FE) analyses aimed at investigating the seismic behaviour of an anchored sheet pile wall in dry sand. The model wall is tied to the backfill with two tie rods connected to an anchor beam. The accelerations of the sheet pile wall, the anchor beam and the soil around the wall were measured using miniature piezoelectric accelerometers. The displacement at the tip of the wall was also measured. Stain gauges at five different locations on the wall were used to measure the bending moments induced in the the wall. The anchor forces in the tie rods were also measured using load cells. The results from the centrifuge tests were compared with 2-D, plane strain FE analyses conducted using DIANA-SWANDYNE II and the observed seismic behaviour was explained in the light of these findings. © 2011 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of modeling ion implantation in a multilayer target using moments of a statistical distribution and numerical integration for dose calculation in each target layer is applied to the modelling of As+ in poly-Si/SiO2/Si. Good agreement with experiment is obtained. Copyright © 1985 by The Institute of Electrical and Electronics Engineers, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimal control of problems that are constrained by partial differential equations with uncertainties and with uncertain controls is addressed. The Lagrangian that defines the problem is postulated in terms of stochastic functions, with the control function possibly decomposed into an unknown deterministic component and a known zero-mean stochastic component. The extra freedom provided by the stochastic dimension in defining cost functionals is explored, demonstrating the scope for controlling statistical aspects of the system response. One-shot stochastic finite element methods are used to find approximate solutions to control problems. It is shown that applying the stochastic collocation finite element method to the formulated problem leads to a coupling between stochastic collocation points when a deterministic optimal control is considered or when moments are included in the cost functional, thereby forgoing the primary advantage of the collocation method over the stochastic Galerkin method for the considered problem. The application of the presented methods is demonstrated through a number of numerical examples. The presented framework is sufficiently general to also consider a class of inverse problems, and numerical examples of this type are also presented. © 2011 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The horizontal arching mechanism transfers horizontal earth pressures acting on flexible retaining wall panels to stiffer neighbouring elements via soil shear stresses. In this research, the horizontal arching mechanism and lateral displacements of fixed cantilever walls in a model basement are investigated using centrifuge tests. A series of six tests was carried out at 45 gravities where the panel widths and thicknesses around the model basement were varied, so that the effects of panel geometry and stiffness on horizontal arching could be studied. It is shown that panel crest displacements and base bending moments of the most flexible, narrow panels can be an order of magnitude smaller than conventional active earth pressure calculations would allow. It is suggested that the reduction of earth pressure acting on a panel is directly correlated to the mobilized soil shear strength and hence, soil shear strain. Earth pressure coefficients K are plotted against panel displacements normalized by the panel width, u/B, to simulate the reduction of K with increasing soil strain.An idealized K-u/B curve is introduced, characterised by a reference distortion (u/B) ref beyond which fully plastic soil arching can be inferred, and which is related to the corresponding reference shear strain γ ref at which soil strength is fully mobilized in element tests. © 2006 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural cilia are hairlike microtubule-based structures that are able to move fluid on the micrometer scale using asymmetric motion. In this article, we follow a biomimetic approach to design artificial cilia lining the inner surfaces of microfluidic channels with the goal of propelling fluid. The artificial cilia consist of polymer films filled with superparamagnetic nanoparticles, which can mimic the motion of natural cilia when subjected to a rotating magnetic field. To obtain the magnetic field and associated magnetization local to the cilia, we solve the Maxwell equations, from which the magnetic body moments and forces can be deduced. To obtain the ciliary motion, we solve the dynamic equations of motion, which are then fully coupled to the Navier-Stokes equations that describe the fluid flow around the cilia, thus taking full account of fluid inertial forces. The dimensionless parameters that govern the deformation behavior of the cilia and the associated fluid flow are arrived at using the principle of virtual work. The physical response of the cilia and the fluid flow for different combinations of elastic, fluid viscous, and inertia forces are identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of dynamic centrifuge tests on reduced scale models of flexible retaining structures were conducted on the Turner beam centrifuge at the Schofield Centre of the University of Cambridge. The paper illustrates the main results of the experimental work in terms of observed amplifications of ground motion and mobilised shear stiffness and damping ratio for all tests. The experimental results for one test on a pair of cantilevered walls in dense sand are also presented in terms of measured bending moments and horizontal displacements of the walls during (maximum values) and at the end of (residual values) each seismic event. Finally, the experimental data are discussed in the light of the results obtained from dynamic numerical analyses of the behaviour of cantilevered walls under real seismic actions. © 2010 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents centrifuge test data of the problem of tunnelling effects on buried pipelines and compares them to predictions made using DEM simulations. The paper focuses on the examination of pipeline bending moments, their distribution along the pipe, and their development with tunnel volume loss. Centrifuge results are obtained by PIV analysis and compared to results obtained using the DEM model. The DEM model was built to replicate the centrifuge model as closely as possible and included numerical features formulated specially for this task, such as structural elements to replicate the tunnel and pipeline. Results are extremely encouraging, with deviations between DEM and centrifuge test bending moment results being very small. © 2010 Taylor & Francis Group, London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In standard Gaussian Process regression input locations are assumed to be noise free. We present a simple yet effective GP model for training on input points corrupted by i.i.d. Gaussian noise. To make computations tractable we use a local linear expansion about each input point. This allows the input noise to be recast as output noise proportional to the squared gradient of the GP posterior mean. The input noise variances are inferred from the data as extra hyperparameters. They are trained alongside other hyperparameters by the usual method of maximisation of the marginal likelihood. Training uses an iterative scheme, which alternates between optimising the hyperparameters and calculating the posterior gradient. Analytic predictive moments can then be found for Gaussian distributed test points. We compare our model to others over a range of different regression problems and show that it improves over current methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil-structure interaction mechanisms. The significance of these observations is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Underground space is commonly exploited both to maximise the utility of costly land in urban development and to reduce the vertical load acting on the ground. Deep excavations are carried out to construct various types of underground infrastructure such as deep basements, subways and service tunnels. Although the soil response to excavation is known in principle, designers lack practical calculation methods for predicting both short- and long-term ground movements. As the understanding of how soil behaves around an excavation in both the short and long term is insufficient and usually empirical, the judgements used in design are also empirical and serious accidents are common. To gain a better understanding of the mechanisms involved in soil excavation, a new apparatus for the centrifuge model testing of deep excavations in soft clay has been developed. This apparatus simulates the field construction sequence of a multi-propped retaining wall during centrifuge flight. A comparison is given between the new technique and the previously used method of draining heavy fluid to simulate excavation in a centrifuge model. The new system has the benefit of giving the correct initial ground conditions before excavation and the proper earth pressure distribution on the retaining structures during excavation, whereas heavy fluid only gives an earth pressure coefficient of unity and is unable to capture any changes in the earth pressure coefficient of soil inside the zone of excavation, for example owing to wall movements. Settlements of the ground surface, changes in pore water pressure, variations in earth pressure, prop forces and bending moments in the retaining wall are all monitored during excavation. Furthermore, digital images taken of a cross-section during the test are analysed using particle image velocimetry to illustrate ground deformation and soil–structure interaction mechanisms. The significance of these observations is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions. © 2013 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An orthorhombic DyMnO3 single crystal has been studied in magnetic fields up to 14 T and between 3 K and room temperature. The field dependent ordering temperature of Dy moments is deduced. The paramagnetic Curie Weiss behavior is related mainly to the Dy3+sublattice whereas the Mn sublattice contribution plays a secondary role. DC magnetization measurements show marked anisotropic features, related to the anisotropic structure of a cubic system stretched along a body diagonal, with a magnetic easy axis parallel to the crystallographic b axis. A temperature and field dependent spin flop transition is observed below 9 K, when relatively weak magnetocrystalline anisotropy is overcome by magnetic fields up to 1.6 T. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although musculoskeletal models are commonly used, validating the muscle actions predicted by such models is often difficult. In situ isometric measurements are a possible solution. The base of the skeleton is immobilized and the endpoint of the limb is rigidly attached to a 6-axis force transducer. Individual muscles are stimulated and the resulting forces and moments recorded. Such analyses generally assume idealized conditions. In this study we have developed an analysis taking into account the compliances due to imperfect fixation of the skeleton, imperfect attachment of the force transducer, and extra degrees of freedom (dof) in the joints that sometimes become necessary in fixed end contractions. We use simulations of the rat hindlimb to illustrate the consequences of such compliances. We show that when the limb is overconstrained, i.e., when there are fewer dof within the limb than are restrained by the skeletal fixation, the compliances of the skeletal fixation and of the transducer attachment can significantly affect measured forces and moments. When the limb dofs and restrained dofs are matched, however, the measured forces and moments are independent of these compliances. We also show that this framework can be used to model limb dofs, so that rather than simply omitting dofs in which a limb does not move (e.g., abduction at the knee), the limited motion of the limb in these dofs can be more realistically modeled as a very low compliance. Finally, we discuss the practical implications of these results to experimental measurements of muscle actions.