949 resultados para Classical swine fever
Resumo:
A novel virus, designated swine hepatitis E virus (swine HEV), was identified in pigs. Swine HEV crossreacts with antibody to the human HEV capsid antigen. Swine HEV is a ubiquitous agent and the majority of swine ≥3 months of age in herds from the midwestern United States were seropositive. Young pigs naturally infected by swine HEV were clinically normal but had microscopic evidence of hepatitis, and developed viremia prior to seroconversion. The entire ORFs 2 and 3 were amplified by reverse transcription–PCR from sera of naturally infected pigs. The putative capsid gene (ORF2) of swine HEV shared about 79–80% sequence identity at the nucleotide level and 90–92% identity at the amino acid level with human HEV strains. The small ORF3 of swine HEV had 83–85% nucleotide sequence identity and 77–82% amino acid identity with human HEV strains. Phylogenetic analyses showed that swine HEV is closely related to, but distinct from, human HEV strains. The discovery of swine HEV not only has implications for HEV vaccine development, diagnosis, and biology, but also raises a potential public health concern for zoonosis or xenozoonosis following xenotransplantation with pig organs.
Resumo:
Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richness, and putative 2- to 4-bp A+T-biased specific target sites. Evidence of previous mobility is presented for the Wukong elements. Elements of these three families are associated with 7 of 16 fully or partially sequenced Ae. aegypti genes. Characteristics of these mosquito elements indicate strong similarities to the miniature inverted-repeat transposable elements (MITEs) recently found to be associated with plant genes. MITE-like elements have also been reported in two species of Xenopus and in Homo sapiens. This characterization of multiple families of highly repetitive MITE-like elements in an invertebrate extends the range of these elements in eukaryotic genomes. A hypothesis is presented relating genome size and organization to the presence of highly reiterated MITE families. The association of MITE-like elements with Ae. aegypti genes shows the same bias toward noncoding regions as in plants. This association has potentially important implications for the evolution of gene regulation.
Resumo:
Progesterone (P) powerfully inhibits gonadotropin-releasing hormone (GnRH) secretion in ewes, as in other species, but the neural mechanisms underlying this effect remain poorly understood. Using an estrogen (E)-free ovine model, we investigated the immediate GnRH and luteinizing hormone (LH) response to acute manipulations of circulating P concentrations and whether this response was mediated by the nuclear P receptor. Simultaneous hypophyseal portal and jugular blood samples were collected over 36 hr: 0–12 hr, in the presence of exogenous P (P treatment begun 8 days earlier); 12–24 hr, P implant removed; 24–36 hr, P implant reinserted. P removal caused a significant rapid increase in the GnRH pulse frequency, which was detectable within two pulses (175 min). P insertion suppressed the GnRH pulse frequency even faster: the effect detectable within one pulse (49 min). LH pulsatility was modulated identically. The next two experiments demonstrated that these effects of P are mediated by the nuclear P receptor since intracerebroventricularly infused P suppressed LH release but 3α-hydroxy-5α-pregnan-20-one, which operates through the type A γ-aminobutyric acid receptor, was without effect and pretreatment with the P-receptor antagonist RU486 blocked the ability of P to inhibit LH. Our final study showed that P exerts its acute suppression of GnRH through an E-dependent system because the effects of P on LH secretion, lost after long-term E deprivation, are restored after 2 weeks of E treatment. Thus we demonstrate that P acutely inhibits GnRH through an E-dependent nuclear P-receptor system.
Resumo:
Objective: To compare the feasibility of treatment, safety, and toxicity of intravenous amphotericin B deoxycholate prepared in either glucose or intralipid for empirical antimycotic treatment of neutropenic cancer patients.
Resumo:
Fix an isogeny class
Resumo:
We construct an Euler product from the Hecke eigenvalues of an automorphic form on a classical group and prove its analytic continuation to the whole complex plane when the group is a unitary group over a CM field and the eigenform is holomorphic. We also prove analytic continuation of an Eisenstein series on another unitary group, containing the group just mentioned defined with such an eigenform. As an application of our methods, we prove an explicit class number formula for a totally definite hermitian form over a CM field.
Resumo:
The H-2Ld alloreactive 2C T cell receptor (TCR) is commonly considered as being positively selected on the H-2Kb molecule. Surprisingly, 2C TCR+ CD8+ single-positive T cells emerge in massive numbers in fetal thymic organ culture originating from 2C transgenic, H-2KbDb−/− (2C+KbDb−/−) but not in fetal thymic organ culture from β2-microglobulin−/− 2C transgenic animals. Mature CD8+ T cells are observed in newborn but not in adult 2C+KbDb−/− mice. These CD8+ T cells express the α4β7 integrin, which allows them to populate the intestine, a pattern of migration visualized by intrathymic injection of FITC and subsequent accrual of FITC-labeled lymphocytes in the gut. We conclude that the 2C TCR is reactive not only with H-2Ld and H-2Kb, but also with nonclassical MHC class I products to enable positive selection of 2C+ T cells in the fetal and newborn thymus and to support their maintenance in the intestine.
Resumo:
Poxviruses encode proteins that block the activity of cytokines. Here we show that the study of such virulence factors can contribute to our understanding of not only virus pathogenesis but also the physiological role of cytokines. Fever is a nonspecific response to infection that contributes to host defense. Several cytokines induce an elevation of body temperature when injected into animals, but in naturally occurring fever it has been difficult to show that any cytokine has a critical role. We describe the first example of the suppression of fever by a virus and the molecular mechanism leading to it. Several vaccinia virus strains including smallpox vaccines express soluble interleukin 1 (IL-1) receptors, which bind IL-1 beta but not IL-1 alpha. These viruses prevent the febrile response in infected mice, whereas strains that naturally or through genetic engineering lack the receptor induce fever. Repair of the defective IL-1 beta inhibitor in the smallpox vaccine Copenhagen, a more virulent virus than the widely used vaccine strains Wyeth and Lister, suppresses fever and attenuates the disease. The vaccinia-induced fever was inhibited with antibodies to IL-1 beta. These findings provide strong evidence that IL-1 beta, and not other cytokines, is the major endogenous pyrogen in a poxvirus infection.