950 resultados para Chemistry, Crystal-Structure, Dinuclear, Discrete, Lanthanide Complexes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The (6R*,9S*,11S*) and (22S*,23R*,27R*,31R*) stereochemistry, respectively, of the tetrahydropyranyl and spiroacetal moieties in bistramide A (1) have been established by stereoselective syntheses and high field NMR comparisons. Routes to the gamma-amino acid moiety are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review discusses the mechanisms of oxygen activation by cytochrome P450 enzymes, the possible catalytic roles of the various iron-oxygen species formed in the catalytic cycle, and progress in understanding the mechanisms of hydrocarbon hydroxylation, heteroatom oxidation, and olefin epoxidation. The focus of the review is on recent results, but earlier work is discussed as appropriate. The literature through to February 2002 is surveyed, and 175 referenced are cited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The iron(II) complex [Fe(AMN(3)S(3)sarH)](ClO4)(3).3H(2)O (AMN(3)S(3)sarH = 8-ammonio-1-methyl-3,13,16-trithia-6,10,19-triazabicyclo[6.6.6]icosane) has been synthesized and characterized by single crystal structure and spectroscopic methods. The Fe(II)-S(thiaether) bond lengths are short, indicative of a large degree of metal-ligand orbital mixing (pi-acceptor character) of the thiaether ligand. The complex is stable to metal centred oxidation. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal structures have been determined for free Escherichia coli hypoxanthine phosphoribosyltransferase (HPRT) (2.9 Angstrom resolution) and for the enzyme in complex with the reaction products, inosine 5'-monophosphate (IMP) and guanosine 5-monophosphate (GMP) (2.8 Angstrom resolution). Of the known 6-oxopurine phosphoribosyltransferase (PRTase) structures, E. coli HPRT is most similar in structure to that of Tritrichomonas foetus HGXPRT, with a rmsd for 150 Calpha atoms of 1.0 Angstrom. Comparison of the free and product bound structures shows that the side chain of Phe156 and the polypeptide backbone in this vicinity move to bind IMP or GMP. A nonproline cis peptide bond, also found in some other 6-oxopurine PRTases, is observed between Leu46 and Arg47 in both the free and complexed structures. For catalysis to occur, the 6-oxopurine PRTases have a requirement for divalent metal ion, Usually Mg2+ in vivo. In the free structure, a Mg2+, is coordinated to the side chains of Glu103 and Asp104. This interaction may be important for stabilization of the enzyme before catalysis. E. coli HPRT is unique among the known 6-oxopurine PRTases in that it exhibits a marked preference for hypoxanthine as substrate over both xanthine and guanine. The structures suggest that its substrate specificity is due to the modes of binding of the bases. In E. coli HPRT, the carbonyl oxygen of Asp 163 would likely form a hydrogen bond with the 2-exocyclic nitrogen of guanine (in the HPRT-guanine-PRib-PP-Mg2+ complex). However, hypoxanthine does not have a 2-exocyclic atom and the HPRT-IMP structure suggests that hypoxanthine is likely to occupy a different position in the purine-binding pocket.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of molecular complexes (prereactive intermediates) between C3O2 and amines (ammonia, dimethylamine, trimethylamine, and 4-(dimethylamino)pyridine) as well as the subsequent transformation of the complexes into C3O2-amine zwitterions in cryogenic matrixes (ca. 40 K) has been observed. In the case of dimethylamine, the formation of tetramethylmalonamide has also been documented. Calculations using density functional theory (B3LYP/6-31G(2d, p)) are used to assign all above species and are in excellent agreement with the IR spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first direct voltammetric response from a molybdenum enzyme under non-turnover conditions is reported. Cyclic voltammetry of dimethylsulfoxide reductase from Rhodobacter capsulatus reveals a reversible Mo-VI/V response at + 161 mV followed by a reversible Mo-V/IV response at -102 mV versus NHE at pH 8. The higher potential couple exhibits a pH dependence consistent with protonation upon reduction to the Mo-V state and we have determined the pK(a) for this semi-reduced species to be 9.0. The lower potential couple is pH independent within the range 5 < pH < 10. The optical spectrum of the Mo chromophore has been investigated with spectroelectrochemistry. At high potential, in its resting state, the enzyme exhibits a spectrum characteristic of the Mo-VI form. This changes significantly following bulk electrolysis (-400 mV versus NHE) at an optically transparent, indium-doped tin oxide working electrode, where a single visible electronic maximum at 632 nm is observed, which is comparable with spectra reported previously for the dithionite-reduced enzyme. This two-electron process is chemically reversible by reoxidizing the enzyme at the electrode in the absence of mediators or promoters. The activity of the enzyme has been established by observation of a catalytic current in the presence of DMSO at pH 8, where a sigmoidal (steady state) voltammogram is seen. Electronic supplementary material to this paper (Fig. S 1) can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-002-0374-y.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An active form of the Dengue virus protease NS3 (CF40.Gly.NS3pro) was expressed in Escherichia coli. This construct consists of a critical 40 amino acid cofactor domain from NS2B fused to the N-terminal 184 amino acid protease domain of NS3 via a flexible, covalent linker (Gly(4)SerGly(4)). The recombinantly produced protein is soluble and has a hexa-histidine tag engineered at the N-terminus for ease of purification using metal affinity chromatography. However, the presence of lower molecular weight impurities after affinity chromatography indicated the need for additional purification steps. The consistent appearance of these impurities suggested that they may be the products of proteolysis and/or auto-proteolysis. The latter possibility was subsequently excluded by the observation of the same impurities in a purified, catalytically inactive form of the recombinant protease (CF40.Gly.NS3pro.SA). Further analysis indicated that these impurities may represent premature translation termination products. Regardless of their origin, they were shown to form various sized aggregates with full-length CF40.Gly.NS3pro that can be separated by size exclusion chromatography, yielding fractions of active protease of sufficient purity for crystallisation trials. The ultimate goal of these studies is to obtain a crystal structure of a catalytically active form of the Dengue virus NS3 protease for structure-based drug design. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 101 residue protein early pregnancy factor (EPF), also known as human chaperonin 10, was synthesized from four functionalized, but unprotected, peptide segments by a sequential thioether ligation strategy. The approach exploits the differential reactivity of a peptide-NHCH2CH2SH thiolate with XCH2CO-peptides, where X = Cl or I/Br. Initial model studies with short functionalized (but unprotected) peptides showed a significantly faster reaction of a peptide-NHCH2CH2SH thiolate with a BrCH2CO-peptide than with a CICH2CO-peptide, where thiolate displacement of the halide leads to chemoselective formation of a thioether surrogate for the Gly-Gly peptide bond. This rate difference was used as the basis of a novel sequential ligation approach to the synthesis of large polypeptide chains. Thus, ligation of a model bifunctional N-alpha-chloroacetyl, C-terminal thiolated peptide with a second N-alpha-bromoacetyl peptide demonstrated chemoselective bromide displacement by the thiol group. Further investigations showed that the relatively unreactive N-alpha-chloroacetyl peptides could be activated by halide exchange using saturated KI solutions to yield the highly reactive No-iodoacetyl peptides. These findings were used to formulate a sequential thioether ligation strategy for the synthesis of EPF, a 101 amino acid protein containing three Gly-Gly sites approximately equidistantly spaced within the peptide chain. Four peptide segments or cassettes comprising the EPF protein sequence (BrAc-[EPF 78-101] 12, ClAc-[EPF 58-75]-[NHCH2CH2SH] 13, ClAc-[EPF 30-55]-[NHCH2CH2SH] 14, and Ac-[EPF 1-27]-[NHCH2CH2SH] 15) of EPF were synthesized in high yield and purity using Boc SPPS chemistry. In the stepwise sequential ligation strategy, reaction of peptides 12 and 13 was followed by conversion of the N-terminal chloroacetyl functional group to an iodoacetyl, thus activating the product peptide for further ligation with peptide 14. The process of ligation followed by iodoacetyl activation was repeated to yield an analogue of EPF (EPF psi(CH2S)(28-29,56-57,76-77)) 19 in 19% overall yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing poly(ethylene oxide) surfactant to aluminum hydrate colloids can effectively direct the crystal growth of boehmite and the crystal morphology of final gamma-alumina crystallites. Fibrous crystallites of gamma-alumina about 3-4 nm thick and 30-60 nm long are obtained. They stack randomly, resulting in a structure with a low contact area between the fibers but with a very large porosity. Such a structure exhibits strong resistance to sintering when heated to high temperatures. A sample retains a BET surface area of 68 m(2)/g, after being heated to 1473 K. The surfactant molecules form micelles that interact with the colloid particles of aluminum hydroxide through hydrogen bonding. This interaction is not sufficient to change the intrinsic crystal structure of boehmite, but induces profound changes in the morphology of boehmite crystallites and their growth. The surfactant-induced fiber formation (SIFF) process has distinct features from templated synthesis but shows similarities in some respects to biomineralization processes in which inorganic crystals with complex morphological shapes can be formed in biological systems. SIFF offers an effective approach to create new nanostructures of inorganic oxide from aqueous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta-strand conformation is unknown for short peptides in aqueous solution, yet it is a fundamental building block in proteins and the crucial recognition motif for proteolytic enzymes that enable formation and turnover of all proteins. To create a generalized scaffold as a peptidomimetic that is preorganized in a beta-strand, we individually synthesized a series of 15-22-membered macrocyclic analogues of tripeptides and analyzed their structures. Each cycle is highly constrained by two trans amide bonds and a planar aromatic ring with a short nonpeptidic linker between them. A measure of this ring strain is the restricted rotation of the component tyrosinyl aromatic ring (DeltaG(rot) 76.7 kJ mol(-1) (16-membered ring), 46.1 kJ mol(-1) (17-membered ring)) evidenced by variable temperature proton NMR spectra (DMF-d(7), 200-400 K). Unusually large amide coupling constants ((3)J(NH-CHalpha) 9-10 Hz) corresponding to large dihedral angles were detected in both protic and aprotic solvents for these macrocycles, consistent with a high degree of structure in solution. The temperature dependence of all amide NH chemical shifts (Deltadelta/T7-12 ppb/deg) precluded the presence of transannular hydrogen bonds that define alternative turn structures. Whereas similar sized conventional cyclic peptides usually exist in solution as an equilibrium mixture of multiple conformers, these macrocycles adopt a well-defined beta-strand structure even in water as revealed by 2-D NMR spectral data and by a structure calculation for the smallest (15-membered) and most constrained macrocycle. Macrocycles that are sufficiently constrained to exclusively adopt a beta-strand-mimicking structure in water may be useful pre-organized and generic templates for the design of compounds that interfere with beta-strand recognition in biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new peptidomimetics (1-3) have been developed with highly stable and conformationally constrained macrocyclic components that replace tripeptide segments of protease substrates. Each compound inhibits both HIV-1 protease and viral replication (HIV-I, HIV-2) at nanomolar concentrations without cytotoxicity to uninfected cells below 10 mu M. Their activities against HIV-1 protease (K-i 1.7 nM (1), 0.6 nM (2), 0.3 nM (3)) are 1-2 orders of magnitude greater than their antiviral potencies against HIV-1-infected primary peripheral blood mononuclear cells (IC50 45 nM (1), 56 nM (2), 95 nM (3)) or HIV-1-infected MT2 cells (IC50 90 nM (1), 60 nM (2)), suggesting suboptimal cellular uptake. However their antiviral potencies are similar to those of indinavir and amprenavir under identical conditions. There were significant differences in their capacities to inhibit the replication of HIV-1 and HIV-2 in infected MT2 cells, 1 being ineffective against HIV-2 while 2 was equally effective against both virus types. Evidence is presented that 1 and 2 inhibit cleavage of the HIV-1 structural protein precursor Pr55(gag) to p24 in virions derived from chronically infected cells, consistent with inhibition of the viral protease in cells. Crystal structures refined to 1.75 Angstrom (1) and 1.85 Angstrom (2) for two of the macrocyclic inhibitors bound to HIV-1 protease establish structural mimicry of the tripeptides that the cycles were designed to imitate. Structural comparisons between protease-bound macrocyclic inhibitors, VX478 (amprenavir), and L-735,524 (indinavir) show that their common acyclic components share the same space in the active site of the enzyme and make identical interactions with enzyme residues. This substrate-mimicking minimalist approach to drug design could have benefits in the context of viral resistance, since mutations which induce inhibitor resistance may also be those which prevent substrate processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flash vacuum thermolysis (FVT) of 1-(dimethylamino)pyrrole-2,3-diones 5 causes extrusion of CO with formation of transient hydrazonoketenes 7. The transient ketenes 7 are observable in the form of weak bands at 2130 (7a) or 2115 cm(-1) (7b) in the Ar matrix IR spectra resulting from either FVT or photolysis of either 5 or 1,1- dimethylpyrazolium-5- oxides 8, and these absorptions are in excellent agreement with B3LYP/6-31G* frequency calculations. Under FVT conditions the ketenes 7 cyclize to pyrazolium oxides 8, which undergo 1,4-migration of a methyl group to yield 1,4-dimethyl-3-phenylpyrazole-5(4H)-one 9a and 1,4,4-trimethyl-3-phenylpyrazole-5(4H)-one 9b. All three tautomers of 9a have been characterized, viz. the CH form 9a (most stable form in the gas phase, the solid state and solvents of low polarity), the OH form 9a' (metastable solid at room temperature) and the NH form 9a (stable in aprotic dipolar solvents). The isomeric 1,4-dimethyl-5-phenylpyrazole-3(2H)-one 12 tautomerizes to the 3-hydroxypyrazole 12'. The crystal structure of the hydrochloride 14 of 9a'/9a is reported, representing the first structurally characterised example of a protonated 5-hydroxypyrazole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 93 K X-ray crystal structure of tris(ethane-1,2-diamine)zinc(II) dinitrate is reported. As predicted by the spectroscopic studies of other workers, there is a reversible phase transition of the structure at low temperature. We have determined this temperature to be 143 K. The structure at this temperature and below resembles that of the room temperature structure, except the crystallographic D-3 symmetry of the complex cation (296 K) is lowered to C-2 ( below 144 K) by subtle changes in cation-anion hydrogen bonding. No change in the conformation of the cation or its bond lengths and angles was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trends between the Hammett's sigma(p) and related normal sigma(n)(p), inductive sigma(I), resonance sigma(R), negative sigma(-)(p) and positive sigma(+)(p) polar conjugation and Taft's sigma(o)(p) substituent constants and the N-H center dot center dot center dot O distance, delta(N-H) NMR chemical shift, oxidation potential (E-p/2(ox), measured in this study by cyclic voltammetry (CV)) and thermodynamic parameters (pK, Delta G(0), Delta H-0 and Delta S-0) of the dissociation process of unsubstituted 3-(phenylhydrazo)pentane-2,4-dione (HL1) and its para-substituted chloro (HL2), carboxy (HL3), fluoro (HL4) and nitro (HL5) derivatives were recognized. The best fits were found for sigma(p) and/or sigma(-)(p) in the cases of d(N center dot center dot center dot O), delta(N-H) and E-p/2(ox), showing the importance of resonance and conjugation effects in such properties, whereas for the above thermodynamic properties the inductive effects (sigma(I)) are dominant. HL2 exists in the hydrazo form in DMSO solution and in the solid state and contains an intramolecular H-bond with the N center dot center dot center dot O distance of 2.588(3)angstrom. It was also established that the dissociation process of HL1-5 is non-spontaneous, endothermic and entropically unfavourable, and that the increase in the inductive effect (sigma(I)) of para-substitutents (-H < -Cl < -COOH < -F < -NO2) leads to the corresponding growth of the N center dot center dot center dot O distance and decrease of the pK and of the changes of Gibbs free energy, of enthalpy and of entropy for the HL1-5 acid dissociation process. The electrochemical behaviour of HL1-5 was interpreted using theoretical calculations at the DFT/HF hybrid level, namely in terms of HOMO and LUMO compositions, and of reactivities induced by anodic and cathodic electron-transfers. Copyright (C) 2010 John Wiley & Sons, Ltd.