932 resultados para Cerebral Autoregulation
Resumo:
BACKGROUND Preterm infants suffering from intraventricular hemorrhage (IVH) are at increased risk for neurodevelopmental impairment. Observational data suggest that recombinant human erythropoietin (rEPO) improves long-term cognitive outcome in infants with IVH. Recent studies revealed a beneficial effect of early high-dose rEPO on white matter development in preterm infants determined by magnetic resonance imaging (MRI). OBJECTIVES To summarize the current evidence and to delineate the study protocol of the EpoRepair trial (Erythropoietin for the Repair of Cerebral Injury in Very Preterm Infants). METHODS The study involves a review of the literature and the design of a double-blind, placebo-controlled, multicenter trial of repetitive high-dose rEPO administration, enrolling 120 very preterm infants with moderate-to-severe IVH diagnosed by cranial ultrasound in the first days of life, qualitative and quantitative MRI at term-equivalent age and long-term neurodevelopmental follow-up until 5 years of age. RESULTS AND CONCLUSIONS The hypothesis generated by observational data that rEPO may improve long-term cognitive outcomes of preterm infants suffering from IVH are to be confirmed or refuted by the randomized controlled trial, EpoRepair.
Resumo:
The history of cerebral aneurysm surgery owes a great tribute to the tenacity of pioneering neurosurgeons who designed and developed the clips used to close the aneurysms neck. However, until the beginning of the past century, surgery of complex and challenging aneurysms was impossible due to the lack of surgical microscope and commercially available sophisticated clips. The modern era of the spring clips began in the second half of last century. Until then, only malleable metal clips and other non-metallic materials were available for intracranial aneurysms. Indeed, the earliest clips were hazardous and difficult to handle. Several neurosurgeons put their effort in developing new clip models, based on their personal experience in the treatment of cerebral aneurysms. Finally, the introduction of the surgical microscope, together with the availability of more sophisticated clips, has allowed the treatment of complex and challenging aneurysms. However, today none of the new instruments or tools for surgical therapy of aneurysms could be used safely and effectively without keeping in mind the lessons on innovative surgical techniques provided by great neurovascular surgeons. Thanks to their legacy, we can now treat many types of aneurysms that had always been considered inoperable. In this article, we review the basic principles of surgical clipping and illustrate some more advanced techniques to be used for complex aneurysms.
Resumo:
BACKGROUND Continuous venovenous hemodialysis (CVVHD) may generate microemboli that cross the pulmonary circulation and reach the brain. The aim of the present study was to quantify (load per time interval) and qualify (gaseous vs. solid) cerebral microemboli (CME), detected as high-intensity transient signals, using transcranial Doppler ultrasound. MATERIALS AND METHODS Twenty intensive care unit (ICU group) patients requiring CVVHD were examined. CME were recorded in both middle cerebral arteries for 30 minutes during CVVHD and a CVVHD-free interval. Twenty additional patients, hospitalized for orthopedic surgery, served as a non-ICU control group. Statistical analyses were performed using the Mann-Whitney U test or the Wilcoxon matched-pairs signed-rank test, followed by Bonferroni corrections for multiple comparisons. RESULTS In the non-ICU group, 48 (14.5-169.5) (median [range]) gaseous CME were detected. In the ICU group, the 67.5 (14.5-588.5) gaseous CME detected during the CVVHD-free interval increased 5-fold to 344.5 (59-1019) during CVVHD (P<0.001). The number of solid CME was low in all groups (non-ICU group: 2 [0-5.5]; ICU group CVVHD-free interval: 1.5 [0-14.25]; ICU group during CVVHD: 7 [3-27.75]). CONCLUSIONS This observational pilot study shows that CVVHD was associated with a higher gaseous but not solid CME burden in critically ill patients. Although the differentiation between gaseous and solid CME remains challenging, our finding may support the hypothesis of microbubble generation in the CVVHD circuit and its transpulmonary translocation toward the intracranial circulation. Importantly, the impact of gaseous and solid CME generated during CVVHD on brain integrity of critically ill patients currently remains unknown and is highly debated.
Resumo:
BACKGROUND White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects. METHODS Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years). RESULTS CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects. CONCLUSION The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.
Resumo:
The rheoencephalogram (REG) is the change in the electrical impedance of the head that occurs with each heart beat. Without knowledge of the relationship between cerebral blood flow (Q) and the REG, the utility of the REG in the study of the cerebral vasculature is greatly limited. The hypothesis is that the relationship between the REG and Q when venous outflow is nonpulsatile is^ (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI)^ where K is a proportionality constant and Q is the mean Q.^ Pulsatile CBF was measured in the goat via a chronically implanted electromagnetic flowmeter. Electrodes were implanted in the ipsilateral cerebral hemisphere, and the REG was measured with a two electrode impedance plethysmograph. Measurements were made with the animal's head elevated so that venous flow pulsations were not transmitted from the heart to the cerebral veins. Measurements were made under conditions of varied cerebrovascular resistance induced by altering blood CO(,2) levels and under conditions of high and low cerebrospinal fluid pressures. There was a high correlation (r = .922-.983) between the REG calculated from the hypothesized relationship and the measured REG under all conditions.^ Other investigators have proposed that the REG results from linear changes in blood resistivity proportional to blood velocity. There was little to no correlation between the measured REG and the flow velocity ( r = .022-.306). A linear combination of the flow velocity and the hypothesized relationship between the REG and Q did not predict the measured REG significantly better than the hypothesized relationship alone in 37 out of 50 experiments.^ Jacquy proposed an index (F) of cerebral blood flow calculated from amplitudes and latencies of the REG. The F index was highly correlated (r = .929) with measured cerebral blood flow under control and hypercapnic conditions, but was not as highly correlated under conditions of hypocapnia (r = .723) and arterial hypotension (r = .681).^ The results demonstrate that the REG is not determined by mean cerebral blood flow, but by the pulsatile flow only. Thus, the utility of the REG in the determination of mean cerebral blood flow is limited. ^
Resumo:
Arterial spin labeling (ASL) is a technique for noninvasively measuring cerebral perfusion using magnetic resonance imaging. Clinical applications of ASL include functional activation studies, evaluation of the effect of pharmaceuticals on perfusion, and assessment of cerebrovascular disease, stroke, and brain tumor. The use of ASL in the clinic has been limited by poor image quality when large anatomic coverage is required and the time required for data acquisition and processing. This research sought to address these difficulties by optimizing the ASL acquisition and processing schemes. To improve data acquisition, optimal acquisition parameters were determined through simulations, phantom studies and in vivo measurements. The scan time for ASL data acquisition was limited to fifteen minutes to reduce potential subject motion. A processing scheme was implemented that rapidly produced regional cerebral blood flow (rCBF) maps with minimal user input. To provide a measure of the precision of the rCBF values produced by ASL, bootstrap analysis was performed on a representative data set. The bootstrap analysis of single gray and white matter voxels yielded a coefficient of variation of 6.7% and 29% respectively, implying that the calculated rCBF value is far more precise for gray matter than white matter. Additionally, bootstrap analysis was performed to investigate the sensitivity of the rCBF data to the input parameters and provide a quantitative comparison of several existing perfusion models. This study guided the selection of the optimum perfusion quantification model for further experiments. The optimized ASL acquisition and processing schemes were evaluated with two ASL acquisitions on each of five normal subjects. The gray-to-white matter rCBF ratios for nine of the ten acquisitions were within ±10% of 2.6 and none were statistically different from 2.6, the typical ratio produced by a variety of quantitative perfusion techniques. Overall, this work produced an ASL data acquisition and processing technique for quantitative perfusion and functional activation studies, while revealing the limitations of the technique through bootstrap analysis. ^
Resumo:
The development of nosocomial pneumonia was monitored in 96 head-trauma patients requiring mechanical ventilation for up to 10 days. Pneumonia occurred in 28 patients (29.2%) or 53.9 cases per 1,000 admission days. The incidence of nosocomial pneumonia was negatively correlated with cerebral oxygen metabolic rate (CMRO$\sb2$) measured during the first five days. The relative risk of nosocomial pneumonia for patients with CMRO$\sb2$ less than 0.6 umol/gm/min is 2.08 (1.09$-$3.98) times those patients with CMRO$\sb2$ greater than 0.6 umol/gm/min. The association between cerebral oxygen metabolic rate and nosocomial pneumonia was not affected by adjustment of potential confounding factors including age, cimetidine and other infections. These findings provide evidences underlying the CNS-immune system interaction. ^
Resumo:
The association between increases in cerebral glucose metabolism and the development of acidosis is largely inferential, based on reports linking hyperglycemia with poor neurological outcome, lactate accumulation, and the severity of acidosis. We measured local cerebral metabolic rate for glucose (lCMRglc) and an index of brain pH--the acid-base index (ABI)--concurrently and characterized their interaction in a model of focal cerebral ischemia in rats in a double-label autoradiographic study, using ($\sp{14}$C) 2-deoxyglucose and ($\sp{14}$C) dimethyloxazolidinedione. Computer-assisted digitization and analysis permitted the simultaneous quantification of the two variables on a pixel-by-pixel basis in the same brain slices. Hemispheres ipsilateral to tamponade-induced middle cerebral occlusion showed areas of normal, depressed and elevated glucose metabolic rate (as defined by an interhemispheric asymmetry index) after two hours of ischemia. Regions of normal glucose metabolic rate showed normal ABI (pH $\pm$ SD = 6.97 $\pm$ 0.09), regions of depressed lCMRglc showed severe acidosis (6.69 $\pm$ 0.14), and regions of elevated lCMRglc showed moderate acidosis (6.88 $\pm$ 0.10), all significantly different at the.00125 level as shown by analysis of variance. Moderate acidosis in regions of increased lCMRglc suggests that anaerobic glycolysis causes excess protons to be generated by the uncoupling of ATP synthesis and hydrolysis. ^
Resumo:
The neu gene encodes a 185,000-Da membrane glycoprotein that is highly homologous to epidermal growth factor receptor. It is frequently overexpressed or amplified in human breast carcinomas and ovarian cancers, which correlates with a poor prognosis for patients. The importance of neu gene regulation is noted by the fact that many breast cancer cells overexpress the neu gene without proportional gene amplification. The mechanism for that is unclear. My initial finding of neu autoregulation led to a realization that defects in neu autoregulation pathway may contribute to neu overexpression in tumor cells. I have found in the nontransformed NIH 3T3 model system that (i) the neu gene product autorepresses its own promoter activity, (ii) the neu gene promoter contains a novel enhancer, (iii) neu autorepression is mediated through this enhancer by inhibition of the enhancer activity, and (iv) c-myc expression serves as an intermediate step downstream from the membrane bound neu-encoded receptor in this complicated feedback inhibition pathway.^ In addition, a part of my research is studying the neu-encoded receptor molecule. I have generated a construct coding the neu ligand-binding domain and demonstrated that (i) the neu ligand-binding domain is a secretory peptide, (ii) it inhibits the normal neu-associated tyrosine kinase but not activated neu-associated tyrosine kinase. My study provided experimental evidence for the mechanisms of neu gene activation. ^
Resumo:
One of the most elegant and tightly regulated mechanisms for control of gene expression is alternative pre-mRNA splicing. Despite the importance of regulated splicing in a variety of biological processes relatively little is understood about the mechanisms by which specific alternative splice choices are made and regulated. The transformer-2 (tra-2) gene encodes a splicing regulator that controls the use of alternative splicing pathways in the sex determination cascade of D. melanogaster and is particularly interesting because it directs the splicing of several distinct pre-mRNAs in different manners. The tra-2 protein positively regulates the splicing of both doublesex (dsx) and fruitless (fru) pre-mRNAs. Additionally tra-2 controls exuperantia (exu) by directing the choices between splicing and cleavage/polyadenylation and autoregulates the tra-2 pre-mRNA processing by repressing the removal of a specific intron (called M1). The goal of this study is to identify the molecular mechanisms by which TRA-2 protein affects the alternative splicing of pre-mRNA deriving from the tra-2 gene itself.^ The autoregulation of M1 splicing plays a key role in regulation of the relative levels of two functionally distinct TRA-2 protein isoforms expressed in the male germline. We have examined whether the structure, function, and regulation of tra-2 are conserved in Drosophila virilis, a species diverged from D. melanogaster by over 60 million years. We find that the D. virilis homolog of tra-2 produces alternatively spliced RNAs encoding a set of protein isoforms analogous to those found in D. melanogaster. When introduced into the genome of D. melanogaster, this homolog can functionally replace the endogenous tra-2 gene for both normal female sexual differentiation and spermatogenesis. Examination of alternative pre-mRNAs produced in D. virilis testes suggests that the germline-specific autoregulation of tra-2 function is accomplished by a strategy similar to that used in D. melanogaster.^ To identify elements necessary for regulation of tra-2 M1 splicing, we mutagenized evolutionarily conserved sequences within the tra-2 M1 intron and flanking exons. Constructs containing these mutations were used to generate transgenic fly lines that have been tested for their ability to carry out autoregulation. These transgenic fly experiments elucidated several elements that are necessary for setting up a context under which tissue-specific regulation of M1 splicing can occur. These elements include a suboptimal 3$\sp\prime$ splice site, an element that has been conserved between D. virilis and D. melanogaster, and an element that resembles the 3$\sp\prime$ portion of a dsx repeat and other splicing enhancers.^ Although important contextual features of the tra-2 M1 intron have been delineated in the transgenic fly experiments, the specific RNA sequences that interact directly with the TRA-2 protein were not identified. Using Drosophila nuclear extracts from Schneider cells, we have shown that recombinant TRA-2 protein represses M1 splicing in vitro. UV crosslinking analysis suggests that the TRA-2 protein binds to several different sites within and near the M1 intron. ^
Resumo:
Las respuestas que se generan a partir de cuestionamientos del origen del hombre nos permitirán especular hacia dónde evolucionará como especie. Los grandes saltos evolutivos que diferencian a los primates humanos de los no humanos, se podrían describir entre otras características por una eficiente memoria para el uso de herramientas, la dominancia para el uso de la mano junto al desarrollo de la oposición del pulgar y el lenguaje. Se ha descrito un gen, el HSR que expresa para la dominancia para el uso de la mano derecha, habilidades cognitivas relacionadas con el lenguaje y asimetría cerebral en humanos. Este es un gen imprintado, es decir, que se hereda su expresión según el origen parental y cuya expresión está regulada por factores epigenéticos. Estos factores, modifican la expresión del gen sin afectar la estructura primaria del ADN. Se ha estudiado la expresión fenotípica del gen HSR en una población de niños escolarizados de La Rioja, dividida en dos regiones (Región 1 y Región 2). Los resultados obtenidos, que muestran una alteración de las proporciones fenotípicas del gen en la Región 2, apoyan fuertemente la posibilidad de que un factor ambiental estaría condicionando el epigenotipo del gen HSR. Se piensa que el estudio de estos mecanismos regulatorios en estos genes recientemente adquiridos por la evolución y blanco de funciones también recientemente adquiridas, podría dar información de hacia dónde la evolución del hombre podría proyectarse en el futuro.
Resumo:
Objetivo: Determinar la frecuencia de resangrado en los primeros 21 días como complicación de una ruptura de aneurisma cerebral. Diseño: Estudio descriptivo, retrospectivo Materiales y método: Se analizó una muestra pacientes obtenida de la base de datos de Unidad de Terapia Intensiva (UTI) del Hospital Central que habían sufrido una hemorragia subaracnoidea (HSA) por ruptura de aneurisma cerebral en el período comprendido entre junio de 2006 a enero de 2010. Se identificó el número de pacientes que sufrieron un resangrado como complicación del evento no sometido a tratamiento quirúrgico durante los 21 días posteriores al mismo. Resultados: Se analizó una muestra de 81 pacientes, 44 mujeres (54%) y 37 hombres (46%), edad media de 51 años (DS+/-14). Se registraron 6 resangrados (7,4%) en los 44 meses de seguimiento. El 50% de los resangrados (3 pacientes) acontecieron durante las primeras 24 horas. El 50% (3 pacientes) ocurrieron en mujeres. La edad media en la que apareció la complicación fue 52 años (DS+/-14). Conclusión: La frecuencia de resangrado luego de una ruptura de aneurisma es del 7,4%, con un pico de aparición en las primeras 24 horas.
Resumo:
Fil: Massini Correas, Carlos I.. Universidad de Mendoza
Resumo:
El objetivo de la siguiente ponencia es revalorizar y reconocer aquellos aspectos anatómicos y funcionales de algunos elementos del sistema nervioso imprescindibles para el correcto funcionamiento del cuerpo humano, tanto en los movimientos deportivos, como en la variedad infinita de los actos motores resumidos en las contracciones musculares. Ante los diferentes rangos articulares posibles y las determinadas acciones musculares específicas, la corteza cerebral y el cuerpo estriado participan activamente en la ejecución de cada movimiento, ya que ambos permiten que ese gesto se produzca de una forma determinada, ya sea sumamente preciso o totalmente ineficaz y descoordinado, pero ambos se activan de distinta forma y en momentos diferentes, posibilitando acciones musculares diferentes. Es importante entender cómo participan la corteza motora y los ganglios basales en el inicio del movimiento, en relación a la posición del tronco y el raquis, y al accionar de las extremidades. La armonía del funcionamiento del sistema nervioso central, tanto en sus funciones específicas como en las funciones de sus tractos nerviosos ascendentes y descendentes, permiten corroborar, por un lado, una estrecha relación entre el movimiento, la locomoción y los gestos técnicos deportivos, y por otro, la importancia de las fases estáticas y estabilizaciones constantes del cuerpo humano, destacando el papel que desarrollan los músculos de sostén tanto en las estructuras articulares de la columna vertebral, como también en la elaboración de patrones de movimientos donde participan las extremidades
Resumo:
El objetivo de la siguiente ponencia es revalorizar y reconocer aquellos aspectos anatómicos y funcionales de algunos elementos del sistema nervioso imprescindibles para el correcto funcionamiento del cuerpo humano, tanto en los movimientos deportivos, como en la variedad infinita de los actos motores resumidos en las contracciones musculares. Ante los diferentes rangos articulares posibles y las determinadas acciones musculares específicas, la corteza cerebral y el cuerpo estriado participan activamente en la ejecución de cada movimiento, ya que ambos permiten que ese gesto se produzca de una forma determinada, ya sea sumamente preciso o totalmente ineficaz y descoordinado, pero ambos se activan de distinta forma y en momentos diferentes, posibilitando acciones musculares diferentes. Es importante entender cómo participan la corteza motora y los ganglios basales en el inicio del movimiento, en relación a la posición del tronco y el raquis, y al accionar de las extremidades. La armonía del funcionamiento del sistema nervioso central, tanto en sus funciones específicas como en las funciones de sus tractos nerviosos ascendentes y descendentes, permiten corroborar, por un lado, una estrecha relación entre el movimiento, la locomoción y los gestos técnicos deportivos, y por otro, la importancia de las fases estáticas y estabilizaciones constantes del cuerpo humano, destacando el papel que desarrollan los músculos de sostén tanto en las estructuras articulares de la columna vertebral, como también en la elaboración de patrones de movimientos donde participan las extremidades