830 resultados para Central composite design
Resumo:
The interaction of microorganisms with glass-reinforced polyester resins(GRP), both under laboratory and simulated operating conditions, has been examined following reports of severl! fungal biodeterioration. Although GRP was not previously associated with substantial microbial growth, small amounts of microbial activity would pose problems for products associated with comestible materials. The microbiology of the raw materials was investigated, two ingredients were supportive to microbial populations whilst five materials were biostatic or inhibitory in their action. Production laminate was not susceptible to microbial deterioration or inhibitory to microbes. Incorporation of zinc stearate, one of the supportive ingredients, at 300% manufacturing level or drastic undercuring produced laminate capable of supporting microbial growth but only after a non-biotic stage of degradation. Study of the long-term population dynamics of cisterns of GRP and competitive materials under conditions simulating in-service conditions, monitoring microbial numbers within the experimental vessels and comparing with the populations of the supply water, suggests that the performance of GRP cisterns is slightly superior to conventional competitive materials. An investigation of the biological performance of GRP cisterns in an isolated area of known microbiological hazard was conducted. Severe biodeterioration had been experienced with Preform GRP articles moulded using different production techniques, but substitution of current GRP articles resulted in no recurrence of the problem. All attempts to establish the fungal isolate responsible for the phenomena in cisterns under controlled conditions failed. Scanning Electron Microscopy of GRP surfaces showed that although differences exist between current and Preform laminates, these could not satisfactorily explain the differences in service behaviour. These results and the results of the British Plastics Federation Expert Working Group interlaboratory study are discussed in relation to the original report of gross fungal biodeterioration and, to the design of future testing programmes for the products of industrial concerns.
Resumo:
This thesis reports the development of a reliable method for the prediction of response to electromagnetically induced vibration in large electric machines. The machines of primary interest are DC ship-propulsion motors but much of the work reported has broader significance. The investigation has involved work in five principal areas. (1) The development and use of dynamic substructuring methods. (2) The development of special elements to represent individual machine components. (3) Laboratory scale investigations to establish empirical values for properties which affect machine vibration levels. (4) Experiments on machines on the factory test-bed to provide data for correlation with prediction. (5) Reasoning with regard to the effect of various design features. The limiting factor in producing good models for machines in vibration is the time required for an analysis to take place. Dynamic substructuring methods were adopted early in the project to maximise the efficiency of the analysis. A review of existing substructure- representation and composite-structure assembly methods includes comments on which are most suitable for this application. In three appendices to the main volume methods are presented which were developed by the author to accelerate analyses. Despite significant advances in this area, the limiting factor in machine analyses is still time. The representation of individual machine components was addressed as another means by which the time required for an analysis could be reduced. This has resulted in the development of special elements which are more efficient than their finite-element counterparts. The laboratory scale experiments reported were undertaken to establish empirical values for the properties of three distinct features - lamination stacks, bolted-flange joints in rings and cylinders and the shimmed pole-yoke joint. These are central to the preparation of an accurate machine model. The theoretical methods are tested numerically and correlated with tests on two machines (running and static). A system has been devised with which the general electromagnetic forcing may be split into its most fundamental components. This is used to draw some conclusions about the probable effects of various design features.
Resumo:
This thesis considers two basic aspects of impact damage in composite materials, namely damage severity discrimination and impact damage location by using Acoustic Emissions (AE) and Artificial Neural Networks (ANNs). The experimental work embodies a study of such factors as the application of AE as Non-destructive Damage Testing (NDT), and the evaluation of ANNs modelling. ANNs, however, played an important role in modelling implementation. In the first aspect of the study, different impact energies were used to produce different level of damage in two composite materials (T300/914 and T800/5245). The impacts were detected by their acoustic emissions (AE). The AE waveform signals were analysed and modelled using a Back Propagation (BP) neural network model. The Mean Square Error (MSE) from the output was then used as a damage indicator in the damage severity discrimination study. To evaluate the ANN model, a comparison was made of the correlation coefficients of different parameters, such as MSE, AE energy, AE counts, etc. MSE produced an outstanding result based on the best performance of correlation. In the second aspect, a new artificial neural network model was developed to provide impact damage location on a quasi-isotropic composite panel. It was successfully trained to locate impact sites by correlating the relationship between arriving time differences of AE signals at transducers located on the panel and the impact site coordinates. The performance of the ANN model, which was evaluated by calculating the distance deviation between model output and real location coordinates, supports the application of ANN as an impact damage location identifier. In the study, the accuracy of location prediction decreased when approaching the central area of the panel. Further investigation indicated that this is due to the small arrival time differences, which defect the performance of ANN prediction. This research suggested increasing the number of processing neurons in the ANNs as a practical solution.
Resumo:
The recent explosive growth in advanced manufacturing technology (AMT) and continued development of sophisticated information technologies (IT) is expected to have a profound effect on the way we design and operate manufacturing businesses. Furthermore, the escalating capital requirements associated with these developments have significantly increased the level of risk associated with initial design, ongoing development and operation. This dissertation has examined the integration of two key sub-elements of the Computer Integrated Manufacturing (CIM) system, namely the manufacturing facility and the production control system. This research has concentrated on the interactions between production control (MRP) and an AMT based production facility. The disappointing performance of such systems has been discussed in the context of a number of potential technological and performance incompatibilities between these two elements. It was argued that the design and selection of operating policies for both is the key to successful integration. Furthermore, policy decisions are shown to play an important role in matching the performance of the total system to the demands of the marketplace. It is demonstrated that a holistic approach to policy design must be adopted if successful integration is to be achieved. It is shown that the complexity of the issues resulting from such an approach required the formulation of a structured design methodology. Such a methodology was subsequently developed and discussed. This combined a first principles approach to the behaviour of system elements with the specification of a detailed holistic model for use in the policy design environment. The methodology aimed to make full use of the `low inertia' characteristics of AMT, whilst adopting a JIT configuration of MRP and re-coupling the total system to the market demands. This dissertation discussed the application of the methodology to an industrial case study and the subsequent design of operational policies. Consequently a novel approach to production control resulted. A central feature of which was a move toward reduced manual intervention in the MRP processing and scheduling logic with increased human involvement and motivation in the management of work-flow on the shopfloor. Experimental results indicated that significant performance advantages would result from the adoption of the recommended policy set.
Resumo:
Cold roll forming is an extremely important but little studied sheet metal forming process. In this thesis, the process of cold roll forming is introduced and it is seen that form roll design is central to the cold roll forming process. The conventional design and manufacture of form rolls is discussed and it is observed that surrounding the design process are a number of activities which although peripheral are time consuming and a possible source of error. A CAD/CAM system is described which alleviates many of the problems traditional to form roll design. New techniques for the calculation of strip length and controlling the means of forming bends are detailed. The CAD/CAM system's advantages and limitations are discussed and, whilst the system has numerous significant advantages, its principal limitation can be said to be the need to manufacture form rolls and test them on a mill before a design can be stated satisfactory. A survey of the previous theoretical and experimental analysis of cold roll forming is presented and is found to be limited. By considering the previous work, a method of numerical analysis of the cold roll forming process is proposed based on a minimum energy approach. Parallel to the numerical analysis, a comprehensive range of software has been developed to enhance the designer's visualisation of the effects of his form roll design. A complementary approach to the analysis of form roll design is the generation of form roll design, a method for the partial generation of designs is described. It is suggested that the two approaches should continue in parallel and that the limitation of each approach is knowledge of the cold roll forming process. Hence, an initial experimental investigation of the rolling of channel sections is described. Finally, areas of potential future work are discussed.
Resumo:
This work attempts to create a systemic design framework for man-machine interfaces which is self consistent, compatible with other concepts, and applicable to real situations. This is tackled by examining the current architecture of computer applications packages. The treatment in the main is philosophical and theoretical and analyses the origins, assumptions and current practice of the design of applications packages. It proposes that the present form of packages is fundamentally contradictory to the notion of packaging itself. This is because as an indivisible ready-to-implement solution, current package architecture displays the following major disadvantages. First, it creates problems as a result of user-package interactions, in which the designer tries to mould all potential individual users, no matter how diverse they are, into one model. This is worsened by the minute provision, if any, of important properties such as flexibility, independence and impartiality. Second, it displays rigid structure that reduces the variety and/or multi-use of the component parts of such a package. Third, it dictates specific hardware and software configurations which probably results in reducing the number of degrees of freedom of its user. Fourth, it increases the dependence of its user upon its supplier through inadequate documentation and understanding of the package. Fifth, it tends to cause a degeneration of the expertise of design of the data processing practitioners. In view of this understanding an alternative methodological design framework which is both consistent with systems approach and the role of a package in its likely context is proposed. The proposition is based upon an extension of the identified concept of the hierarchy of holons* which facilitates the examination of the complex relationships of a package with its two principal environments. First, the user characteristics and his decision making practice and procedures; implying an examination of the user's M.I.S. network. Second, the software environment and its influence upon a package regarding support, control and operation of the package. The framework is built gradually as discussion advances around the central theme of a compatible M.I.S., software and model design. This leads to the formation of the alternative package architecture that is based upon the design of a number of independent, self-contained small parts. Such is believed to constitute the nucleus around which not only packages can be more effectively designed, but is also applicable to many man-machine systems design.
Resumo:
Traditional machinery for manufacturing processes are characterised by actuators powered and co-ordinated by mechanical linkages driven from a central drive. Increasingly, these linkages are replaced by independent electrical drives, each performs a different task and follows a different motion profile, co-ordinated by computers. A design methodology for the servo control of high speed multi-axis machinery is proposed, based on the concept of a highly adaptable generic machine model. In addition to the dynamics of the drives and the loads, the model includes the inherent interactions between the motion axes and thus provides a Multi-Input Multi-Output (MIMO) description. In general, inherent interactions such as structural couplings between groups of motion axes are undesirable and needed to be compensated. On the other hand, imposed interactions such as the synchronisation of different groups of axes are often required. It is recognised that a suitable MIMO controller can simultaneously achieve these objectives and reconciles their potential conflicts. Both analytical and numerical methods for the design of MIMO controllers are investigated. At present, it is not possible to implement high order MIMO controllers for practical reasons. Based on simulations of the generic machine model under full MIMO control, however, it is possible to determine a suitable topology for a blockwise decentralised control scheme. The Block Relative Gain array (BRG) is used to compare the relative strength of closed loop interactions between sub-systems. A number of approaches to the design of the smaller decentralised MIMO controllers for these sub-systems has been investigated. For the purpose of illustration, a benchmark problem based on a 3 axes test rig has been carried through the design cycle to demonstrate the working of the design methodology.
Resumo:
This thesis is related to the subject of technical innovation, specifically to the activity of design in microenterprises operating in less industrialised economies. Design here is understood as a process, which is not the sole domain of formally trained categories such as engineers, architects or industrial designers. The 'professional boundary' discussion in this investigation is perceived as secondary as, in this context, products are designed, copied or adapted by workers, entrepreneurs themselves, or directly by the poor community. Design capacity at this level is considered to be important both in relation to the conception of capital and consumer goods and to the building up of technical knowledge. Although professional design emerged in Latin America little over three decades ago, this activity has remained marginalised throughout industry. Design activity tends to be concentrated in some product categories in the formalised industrial sector. For microenterprises operating informally, industrial design appears to be unknown. The existing literature pays little attention to 'informal design' capacity. Other areas of knowledge, such as development economies, recognise the importance of microenterprises and technological capability but neglect the potential role of industrial design in small manufacturing units. The management literature, though it focuses on technical innovation and design, has also paid little attention to 'informal design'. In less industrialised economies this neglect is felt by the lack of programmes specifically tailored to create or stimulate 'informal design'. There is a need for recognition of 'informal design' capacity and for the implementation of programmes which specifically target design as a central activity in the manufacturing firm, independent of their size and technological capability. Addressing 'design by the poor for the poor', requires a down-to-earth approach.
Resumo:
Theprocess of manufacturing system design frequently includes modeling, and usually, this means applying a technique such as discrete event simulation (DES). However, the computer tools currently available to apply this technique enable only a superficial representation of the people that operate within the systems. This is a serious limitation because the performance of people remains central to the competitiveness of many manufacturing enterprises. Therefore, this paper explores the use of probability density functions to represent the variation of worker activity times within DES models.
Resumo:
Neuroimaging (NI) technologies are having increasing impact in the study of complex cognitive and social processes. In this emerging field of social cognitive neuroscience, a central goal should be to increase the understanding of the interaction between the neurobiology of the individual and the environment in which humans develop and function. The study of sex/gender is often a focus for NI research, and may be motivated by a desire to better understand general developmental principles, mental health problems that show female-male disparities, and gendered differences in society. In order to ensure the maximum possible contribution of NI research to these goals, we draw attention to four key principles—overlap, mosaicism, contingency and entanglement—that have emerged from sex/gender research and that should inform NI research design, analysis and interpretation. We discuss the implications of these principles in the form of constructive guidelines and suggestions for researchers, editors, reviewers and science communicators.
Resumo:
In the paper, we construct a composite indicator to estimate the potential of four Central and Eastern European countries (the Czech Republic, Hungary, Poland and Slovakia) to benefit from productivity spillovers from foreign direct investment (FDI) in the manufacturing sector. Such transfers of technology are one of the main benefits of FDI for the host country, and should also be one of the main determinants of FDI incentives offered to investing multinationals by governments, but they are difficult to assess ex ante. For our composite index, we use six components to proxy the main channels and determinants of these spillovers. We have tried several weighting and aggregation methods, and we consider our results robust. According to the analysis of our results, between 2003 and 2007 all four countries were able to increase their potential to benefit from such spillovers, although there are large differences between them. The Czech Republic clearly has the most potential to benefit from productivity spillovers, while Poland has the least. The relative positions of Hungary and Slovakia depend to some extent on the exact weighting and aggregation method of the individual components of the index, but the differences are not large. These conclusions have important implications both the investment strategies of multinationals and government FDI policies.
Resumo:
Keratoconus is a bilateral degenerative disease characterized by a non-inflammatory, progressive central corneal ectasia (typically asymmetric) and decreased vision. In its early stages it may be managed with spectacles and soft contact lenses but more commonly it is managed with rigid contact lenses. In advanced stages, when contact lenses can no longer be fit, have become intolerable, or corneal damage is severe, a penetrating keratoplasty is commonly performed. Alternative surgical techniques, such as the use of intra-stromal corneal ring segments (INTACS) have been developed to try and improve the fit of rigid contact lenses in keratoconic patients and avoid penetrating keratoplasties. This case report follows through the fitting of rigid contact lenses in an advanced keratoconic cornea after an INTACS procedure and discusses clinical findings, treatment options, and the use of mini-scleral and scleral lens designs as they relate to the challenges encountered in managing such a patient. Mini-scleral and scleral lenses are relatively easy to fit, and can be of benefit to many patients, including advanced keratoconic patients, post-INTAC patients and post-penetrating keratoplasty patients. © 2011 British Contact Lens Association.
Resumo:
Design methods and tools are generally best learned and developed experientially [1]. Finding appropriate vehicles for delivering these to students is becoming increasingly challenging, especially when considering only those that will enthuse, intrigue and inspire. This paper traces the development of different eco-car design and build projects which competed in the Shell Eco-Marathon. The cars provided opportunities for experiential learning through a formal learning cycle of CDIO (Conceive, Design, Implement, Operate) or the more traditional understand, explore, create, validate, with both teams developing a functional finished prototype. Lessons learned were applied through the design of a third and fourth eco-car using experimental techniques with bio-composites, combining the knowledge of fibre reinforced composite materials and adhesives with the plywood construction techniques of the two teams. The paper discusses the importance of applying materials and techniques to a real world problem. It will also explore how eco-car and comparing traditional materials and construction techniques with high tech composite materials is an ideal teaching, learning and assessment vehicle for technical design techniques.
Resumo:
In the paper, we construct a composite indicator to estimate the potential of four Central and Eastern European countries (the Czech Republic, Hungary, Poland and Slovakia) to benefit from productivity spillovers from foreign direct investment (FDI) in the manufacturing sector. Such transfers of technology are one of the main benefits of FDI for the host country, and should also be one of the main determinants of FDI incentives offered to investing multinationals by governments, but they are difficult to assess ex ante. For our composite index, we use six components to proxy the main channels and determinants of these spillovers. We have tried several weighting and aggregation methods, and we consider our results robust. According to the analysis of our results, between 2003 and 2007 all four countries were able to increase their potential to benefit from such spillovers, although there are large differences between them. The Czech Republic clearly has the most potential to benefit from productivity spillovers, while Poland has the least. The relative positions of Hungary and Slovakia depend to some extent on the exact weighting and aggregation method of the individual components of the index, but the differences are not large. These conclusions have important implication both the investment strategies of multinationals and government FDI policies.
Resumo:
In this paper, we construct a composite indicator to estimate the potential of four Central and Eastern European countries (the Czech Republic, Hungary, Poland and Slovakia) to benefit from productivity spillovers from foreign direct investment (FDI) in the manufacturing sector. Such transfers of technology are one of the main benefits of FDI for the host country, and should also be one of the main determinants of FDI incentives offered to investing multinationals by governments, but they are difficult to assess ex ante. For our composite index, we use six components to proxy the main channels and determinants of these spillovers. We have tried several weighting and aggregation methods, and we consider our results robust. According to the analysis of our results, between 2003 and 2007 all four countries were able to increase their potential to benefit from such spillovers, although there are large differences between them. The Czech Republic clearly has the most potential to benefit from productivity spillovers, while Poland has the least. The relative positions of Hungary and Slovakia depend to some extent on the exact weighting and aggregation method of the individual components of the index, but the differences are not large. These conclusions have important implications both for the investment strategies of multinationals and government FDI policies.