986 resultados para Central Limit Theorem
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Tree-ring chronologies, developed from cores from Pinyon pines growing on climatically sensitive sites in the north-central Great Basin, have been used to reconstruct precipitation and drought histories of the area from A.D. 1600 to 1982. Analysis of these hydrologic time series helps to place current climatic conditions into the perspective of the past 383 years (since 1600). ... The years 1934 and 1959 were the first and fourth driest while 1934 had the lowest July Palmer Drought Severity Index (PDSI) of the reconstructed records. Nevertheless, the decade of the 1930's is only the seventh driest since 1600; the decade 1953-1962 ranks as the second driest. The driest non-overlapping decade since 1600 was 1856-1865. Interestingly, the second wettest decade was 1932-1941. An examination of 30-year mean precipitation data shows that the driest 30-year period was 1871-1900; 1931-1960 ranks as the fourth driest. The current 30-year period (1951-1980) ranks twelfth.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Verified reconstructions of seasonal temperature, precipitation and sea-level pressure over North America and the North Pacific have been derived from 65 arid-site tree-ring chronologies in the North American West. Significant reconstructions were obtained for temperature for wide areas in the West and mid-continent. Precipitation reconstructions were significant only in the West, and pressure was reconstructed over wide areas of the North Pacific Ocean and the North American continent.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Precipitation variability at 31 stations hanging from San Diego to San Francisco and from the coast to the Sierras was characterized ...
Resumo:
NOAA’s National Centers for Coastal Ocean Science (NCCOS) conducts and supports research, monitoring, assessments, and technical assistance to meet NOAA’s coastal stewardship and management responsibilities. In 2001 the Biogeography Branch of NCCOS partnered with NOAA’s National Marine Sanctuary Program (NMSP) to conduct biogeographic assessments to support the management plan updates for the sanctuaries. The first biogeographic assessment conducted in this partnership focused on three sanctuaries off north/ central California: Cordell Bank, Gulf of the Farallones and Monterey Bay. Phase I of this assessment was conducted from 2001 to 2004, with the primary goal to identify and gather the best available data and information to characterize and identify important biological areas and time periods within the study area. The study area encompasses the three sanctuaries and extends along the coastal ocean off California from Pt. Arena to Pt. Sal (35°-39°N). This partnership project was lead by the NCCOS Biogeography Branch, but included over 90 contributors and 25 collaborating institutions. Phase I results include: 1) a report on the overall assessment that includes hundreds of maps, tables and analyses; 2) an ecological linkage report on the marine and estuarine ecosystems along the coast of north/central California, and 3) related geographic information system (GIS) data and other summary data files, which are available for viewing and download in several formats at the following website: http://ccma.nos.noaa.gov/products/biogeography/canms_cd/welcome.html Phase II (this report) was initiated in the Fall of 2004 to complete the analyses of marine mammals and update the marine bird colony information. Phase II resulted in significant updates to the bird and mammal chapters, as well as adding an environmental settings chapter, which contains new and existing data and maps on the study area. Specifically, the following Phase II topics and items were either revised or developed new for Phase II: •environmental, ecological settings – new maps on marine physiographic features, sea surface temperature and fronts, chlorophyll and productivity •all bird colony or roost maps, including a summary of marine bird colonies •updated at-sea data CDAS data set (1980-2003) •all mammal maps and descriptions •new overall density maps for eight mammal species •new summary pinniped rookery/haulout map •new maps on at-sea richness for cetaceans and pinnipeds •most text in the mammal chapter •new summary tables for mammals on population status and spatial and temporal patterns
Resumo:
The recently revised Magnuson–Stevens Fishery Conservation and Management Act requires that U.S. fishery management councils avoid overfishing by setting annual catch limits (ACLs) not exceeding recommendations of the councils’ scientific advisers. To meet that requirement, the scientific advisers will need to know the overfishing limit (OFL) estimated in each stock assessment, with OFL being the catch available from applying the limit fishing mortality rate to current or projected stock biomass. The advisers then will derive ‘‘acceptable biological catch’’ (ABC) from OFL by reducing OFL to allow for scientific uncertainty, and ABC becomes their recommendation to the council. We suggest methodology based on simple probability theory by which scientific advisers can compute ABC from OFL and the statistical distribution of OFL as estimated by a stock assessment. Our method includes approximations to the distribution of OFL if it is not known from the assessment; however, we find it preferable to have the assessment model estimate the distribution of OFL directly. Probability-based methods such as this one provide well-defined approaches to setting ABC and may be helpful to scientific advisers as they translate the new legal requirement into concrete advice.
Resumo:
This study describes fish assemblages and their spatial patterns off the coast of California from Point Arena to Point Sal, by combining the results of the multivariate analyses of several fisheries datasets with a geographic information system. In order to provide comprehensive spatial coverage for the areas of inshore, continental shelf, and continental slope, three fisheries datasets were analyzed: 1) Inshore: the California Department of Fish and Game dataset of fishery-dependent commercial passenger fishing vessel trips that targeted rockfish; 2) Continental Shelf: the National Marine Fisheries Service (NMFS) fishery-independent bottom trawls; and 3) Continental Slope: the NMFS fishery-independent bottom trawls on the continental slope. One-hundred seven species were analyzed. These species represented those captured in at least 5% of the fishing trips or trawls in at least one of the three data sets. We analyzed each of the three datasets separately, and the three sets of results were combined to define 28 species assemblages and 23 site groups. A species assemblage consisted of species caught together, whereas a site group consisted of fishing trips or trawl locations that tended to have the same species assemblages. At the scale of these datasets, 97% of all site groups were significantly segregated by depth.
Resumo:
The National Status and Trends (NS&T) Program has conducted studies to determine the spatial extent and severity of chemical contamination and associated adverse biological effects in coastal bays and estuaries of the United States since 1991. Sediment contamination in U.S. coastal areas is a major environmental issue because of its potential toxic effects on biological resources and often, indirectly, on human health. Thus, characterizing and delineating areas of sediment contamination and toxicity and demonstrating their effect(s) on benthic living resources are therefore important goals of coastal resource management at NOAA. The National Centers for Coastal Ocean Science, and the Office of National Marine Sanctuaries, in cooperation with the U.S. Geological Survey (USGS), University of California Moss Landing Marine Lab (MLML), and the Monterey Bay Aquarium Research Institute (MBARI), conducted ecosystem monitoring and characterization studies within and between marine sanctuaries along the California coast in 2002 and 2004 on the NOAA RV McArthur. One of the objectives was to perform a systematic assessment of the chemical and physical habitats and associated biological communities in soft bottom habitats on the continental shelf and slope in the central California region. This report addresses the magnitude and extent of chemical contamination, and contaminant transport patterns in the region. Ongoing studies of the benthic community are in progress and will be reported in an integrated assessment of habitat quality and the parameters that govern natural resource distributions on the continental margin and in canyons in the region.