974 resultados para Cavacos de aço SAE 1050
Resumo:
In this paper is presented an experimental research in which the grinding of seating surfaces of inlet engine valves was improved by the adoption of the most effective cutting fluid type, matching the new requirements of cutting fluid application. Four different types of cutting fluids (straight oil and three different types of soluble oils) were analyzed. As qualitative and quantitative evaluation parameters of the performance of the cutting fluids, the roughness, the grinding wheel wear, the cutting force and the workpiece residual stress were determined. As a conclusion, the straight oil was the cutting fluid that presented the best results in all of the parameters analyzed. Copyright © 2000 Society of Automotive Engineers, Inc.
Resumo:
The present work aims at to approach considerations of trucks suspension design. The proposal of the work consists of discussing the aspects related to the acting of the suspension and of factors that interact with the system through representative models of the dynamic behaviour of the vehicle ride when operating in total load and/or empty conditions. The importance of this work is to revise some procedures of suspension study in the sense of adapting them to the Brazilian reality, tends in view the importance of the design characterisation and adaptation to the typical roads of Brazil. Copyright © 2000 Society of Automotive Engineers, Inc.
Resumo:
In three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.
Resumo:
The collapse of trapped Boson-Einstein condensate (BEC) of atoms in states 1 and 2 was studied. When the interaction among the atoms in state i was attractive the component i of the condensate experienced collapse. When the interaction between an atom in state 1 and state 2 was attractive both components experienced collapse. The time-dependant Gross-Pitaevski (GP) equation was used to study the time evolution of the collapse. There was an alternate growth and decay in the number of particles experiencing collapse.
Resumo:
The conditions for the existence of autosolitons were considered in trapped Bose-Einstein condensates with attractive atomic interactions. The expression for the parameters of the autosoliton was derived using the time-dependent variational approach for the nonconservative 3-dimensional Gross-pitaevskii equation and their stability was checked. The results were in agreement with the exact numerical calculations. It was shown that the transition from unstable to stable point solely depends on the magnitude of the parameters.
Resumo:
A basis-set calculation scheme for S-waves Ps-He elastic scattering below the lowest inelastic threshold was formulated using a variational expression for the transition matrix. The scheme was illustrated numerically by calculating the scattering length in the electronic doublet state: a=1.0±0.1 a.u.
Resumo:
The critical number of atoms for Bose-Einstein condensates with cylindrically symmetrical traps were calculated. The time evolution of the condensate was also studied at changing ground state. A conjecture on higher-order nonlinear effects was also discussed to determine its signal and strength. The results show that by exchanging frequencies, the geometry favors the condensation of larger number of particles.
Resumo:
Bose-Einstein condensates with attractive interatomic interactions undergo collective collapse beyond a critical number. We show theoretically that if the low-lying collective modes of the condensate are excited, the radial breathing mode further destabilizes the condensate. Remarkably, excitation of the quadrupolar surface mode causes the condensate to become more stable, imparting quasiangular momentum to it. A significantly larger number of atoms may then occupy the condensate. Efforts are under way for the experimental realization of these effects. ©2001 The American Physical Society.
Resumo:
This work reports a conception phase of a piston engine global model. The model objective is forecast the motor performance (power, torque and specific consumption as a function of rotation and environmental conditions). Global model or Zero-dimensional is based on flux balance through each engine component. The resulting differential equations represents a compressive unsteady flow, in which, all dimensional variables are areas or volumes. A review is presented first. The ordinary differential equation system is presented and a Runge-Kutta method is proposed to solve it numerically. The model includes the momentum conservation equation to link the gas dynamics with the engine moving parts rigid body mechanics. As an oriented to objects model the documentation follows the UML standard. A discussion about the class diagrams is presented, relating the classes with physical model related. The OOP approach allows evolution from simple models to most complex ones without total code rewrite. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
In this work five methods of heat treatments are investigated in order to obtained convenient volume fractions of ferrite, bainite, martensite and retained austenite, starting with a low carbon steel and seeking the distinction of the phases, through optical microscopy. Specific chemical etching is improved. The results in tensile and fatigue tests were accomplished and the results were related with the microstructural parameters. The results show that the mechanical properties are closely related with the phases, grains size and the phases morphology. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
This work has been performed at Tapetes Sao Carlos-Brazil with the cooperation of the DaimlerChrysler Research Center Team in Ulm - Germany. The objective of the present paper is to report the results obtained with natural fiber reinforced unsaturated polyester (UP) composites, concerning surface quality measurements. The fibers that have been chosen for this work were sisal and curaua. The samples were produced by compression molding technique and afterwards submitted to three different tests, namely: a) thermal aging; b) water absorption and c) artificial weathering. The surface parameters measured before and after the tests were gloss, haze, short and long-waviness. The results have shown that after the tests there is a high loss of gloss, a high increase in haze, and a high increase in short and long-waviness as well. Curaua reinforced composites had a slightly better behavior when compared with sisal reinforced composites. The effect of the presence of filler and the addition of thermoplastic polyester (TP) on the material behavior has not been evidently detected. This result shows that the conventional technology/methods applied to UP-Fiberglass systems cannot be transferred to natural fibers without any modification. The fiber-matrix interaction and its response to the presence of additives must be fully understood before a successful processing route can be developed for painted natural fibers reinforced UP. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
Fatigue crack initiation occurs at the surface, although sub surface nucleation has also been reported. Localized imperfections like inclusions close to surface and surface small pits can result in crack sources. Coatings are not always beneficial by fatigue point of view too. Mechanical properties of the covering material can change considerably the fatigue behavior of base metal due to residual surface stresses, to micro cracks or to hydrogen embrittlement. This paper is concerned with analysis of electrolytic etch on the fatigue resistance of a 35NCD16 high strength steel in a mechanical condition of (1760 - 1960) MPa, and analysis of electroplated hard chromium effects on the fatigue resistance in a strength condition of 989 MPa. Hardness impression was used as a reference parameter in case of electrolytic etch. In both cases, experimental data showed that fatigue strength of 35NCD16 steel was considerably reduced. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
A numerical study of the time-dependent Gross-Pitaevskii equation for an axially symmetric trap to obtain insight into the free expansion of vortex states of BEC is presented. As such, the ratio of vortex-core radius to radia rms radius xc/xrms(<1) is found to play an interesting role in the free expansion of condensed vortex states. the larger this ratio, the more prominent is the vortex core and the easier is the possibility of experimental detection of vortex states.
Resumo:
The chaotic oscillation in an attractive Bose-Einstein condensate (BEC) under an impulsive force was discussed using mean-field Gross-Pitaevskii (GP) equation. It was found that sustained chaotic oscillation resulted in a BEC under the action of an impulsive force generated by suddenly changing the interatomic scattering length or the harmonic oscillator trapping potential. The analysis suggested that the final state interatomic attraction played an important role in the generation of the chaotic dynamics.
Resumo:
Numerical simulations based on the time-dependent mean-field Gross-Pitaevskii equation was performed to explain the dynamics of collapsing and exploding Bose-Einstein condensates (BEC) of 85Rb atoms. The atomic interaction was manipulated by an external magnetic field via a Feshbach resonance. On changing the scattering length of atomic interaction from a positive to a large negative value, the condensate collapsed and ejected atoms via explosion.