979 resultados para Caspase activation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metastasis-associated phosphatase of regenerating liver-3 (PRL-3) has pleiotropic effects in driving cancer progression, yet the signaling mechanisms of PRL-3 are still not fully understood. Here, we provide evidence for PRL-3-induced hyperactivation of EGFR and its downstream signaling cascades in multiple human cancer cell lines. Mechanistically, PRL-3-induced activation of EGFR was attributed primarily to transcriptional downregulation of protein tyrosine phosphatase 1B (PTP1B), an inhibitory phosphatase for EGFR. Functionally, PRL-3-induced hyperactivation of EGFR correlated with increased cell growth, promigratory characteristics, and tumorigenicity. Moreover, PRL-3 induced cellular addiction to EGFR signaling, as evidenced by the pronounced reversion of these oncogenic attributes upon EGFR-specific inhibition. Of clinical significance, we verified elevated PRL-3 expression as a predictive marker for favorable therapeutic response in a heterogeneous colorectal cancer (CRC) patient cohort treated with the clinically approved anti-EGFR antibody cetuximab. The identification of PRL-3-driven EGFR hyperactivation and consequential addiction to EGFR signaling opens new avenues for inhibiting PRL-3-driven cancer progression. We propose that elevated PRL-3 expression is an important clinical predictive biomarker for favorable anti-EGFR cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptotic protease activating factor-1 (Apaf-1) has been identified as a proximal activator of caspase-9 in cell death pathways that trigger mitochondrial damage and cytochrome c release. The mechanism of Apaf-1 action is unclear but has been proposed to involve the clustering of caspase-9 molecules, thereby facilitating autoprocessing of adjacent zymogens. Here we show that Apaf-1 can dimerize via the CED-4 homologous and linker domains of the molecule providing a means by which Apaf-1 can promote the clustering of caspase-9 and facilitate its activation. Apaf-1 dimerization was repressed by the C-terminal half of the molecule, which contains multiple WD-40 repeats, but this repression was overcome in the presence of cytochrome c and dATP. Removal of the WD-40 repeat region resulted in a constitutively active Apaf-1 that exhibited greater cytotoxicity in transient transfection assays when compared with full-length Apaf-1. These data suggest a mechanism for Apaf-1 function and reveal an important regulatory role for the WD-40 repeat region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-small cell lung carcinoma remains by far the leading cause of cancer-related deaths worldwide. Overexpression of FLIP, which blocks the extrinsic apoptotic pathway by inhibiting caspase-8 activation, has been identified in various cancers. We investigated FLIP and procaspase-8 expression in NSCLC and the effect of HDAC inhibitors on FLIP expression, activation of caspase-8 and drug resistance in NSCLC and normal lung cell line models. Immunohistochemical analysis of cytoplasmic and nuclear FLIP and procaspase-8 protein expression was carried out using a novel digital pathology approach. Both FLIP and procaspase-8 were found to be significantly overexpressed in tumours, and importantly, high cytoplasmic expression of FLIP significantly correlated with shorter overall survival. Treatment with HDAC inhibitors targeting HDAC1-3 downregulated FLIP expression predominantly via post-transcriptional mechanisms, and this resulted in death receptor- and caspase-8-dependent apoptosis in NSCLC cells, but not normal lung cells. In addition, HDAC inhibitors synergized with TRAIL and cisplatin in NSCLC cells in a FLIP- and caspase-8-dependent manner. Thus, FLIP and procaspase-8 are overexpressed in NSCLC, and high cytoplasmic FLIP expression is indicative of poor prognosis. Targeting high FLIP expression using HDAC1-3 selective inhibitors such as entinostat to exploit high procaspase-8 expression in NSCLC has promising therapeutic potential, particularly when used in combination with TRAIL receptor-targeted agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave heating reduces the preparation time and improves the adsorption quality of activated carbon. In this study, activated carbon was prepared by impregnation of palm kernel fiber with phosphoric acid followed by microwave activation. Three different types of activated carbon were prepared, having high surface areas of 872 m2 g-1, 1256 m2 g-1, and 952 m2 g-1 and pore volumes of 0.598 cc g-1, 1.010 cc g-1, and 0.778 cc g-1, respectively. The combined effects of the different process parameters, such as the initial adsorbate concentration, pH, and temperature, on adsorption efficiency were explored with the help of Box-Behnken design for response surface methodology (RSM). The adsorption rate could be expressed by a polynomial equation as the function of the independent variables. The hexavalent chromium adsorption rate was found to be 19.1 mg g-1 at the optimized conditions of the process parameters, i.e., initial concentration of 60 mg L-1, pH of 3, and operating temperature of 50 oC. Adsorption of Cr(VI) by the prepared activated carbon was spontaneous and followed second-order kinetics. The adsorption mechanism can be described by the Freundlich Isotherm model. The prepared activated carbon has demonstrated comparable performance to other available activated carbons for the adsorption of Cr(VI).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.

Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.

Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric pressure nonthermal-plasma-activated catalysis for the removal of NOx using hydrocarbon selective catalytic reduction has been studied utilizing toluene and n-octane as the hydrocarbon reductant. When the plasma was combined with a Ag/Al2O3 catalyst, a strong enhancement in activity was observed when compared with conventional thermal activation with high conversions of both. NOx and hydrocarbons obtained at temperature at temperature ≤250 °C, where the silver catalyst is normally inactive. Importantly, even in the absence of an external heat source, significant activity was obtained. This low temperature activity provides the basis for applying nonthermal plasmas to activate emission control catalysts during cold start conditions, which remains an important issue for mobile and stationary applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:The Signal Transducer and Activator of Transcription 3 (STAT3) pathway is known to play an important role in inflammation and angiogenesis. STAT3 can be activated by IL-6 family cytokines through the receptor IL-6R/gp130. Increased IL-6 has been detected in the plasma and vitreous in neovascular age-related macular degeneration (nAMD) patients. The aim of this study was to investigate the role of the STAT3 pathway in the pathogenesis of nAMD.

Methods:Blood cells from nAMD patients (n = 11) and age-, gender-matched healthy controls (n = 13) were stimulated with IL-6 for 20 minutes. The expression of the activated form of STAT3 (p-STAT3) was examined by flow cytometry. The mRNA levels of gp130, IL-6R and the suppressor of cytokine signalling 3 (SOCS3, a negative regulator of p-STAT3) were evaluated by real-time RT-PCR. Laser-induced choroidal neovascularisation (CNV) was performed in WT C57BL/6J mice as well as in the myeloid cell specific SOCS3 deficiency mice i.e., the LysMCre-SOCS3fl/fl mice. STAT3 activation in CNV lesions was examined by western blot. The size of CNV at different times after laser treatment was measured by confocal microscopy of RPE/choroidal flatmounts.

Results:The expression of p-STAT3 in CD11b+ monocytes was significantly increased in nAMD patients compared to healthy controls, although mRNA expression of gp130, IL-6R and SOCS3 did not differ between patients and controls. The expression of p-STAT3 in the retinal and RPE/choroidal tissues was increased at 1 and 3 days after laser treatment. The administration of a STAT3 inhibitor LLL12 significantly suppressed CNV. CD11b+ monocytes from LysMCre-SOCS3fl/fl mice expressed higher levels of p-STAT3 compared to the cells from WT mice. Laser induced CNV developed earlier and were larger in LysMCre-SOCS3fl/fl mice compared to WT C57BL/6J mice.

Conclusions:Our results suggest that STAT3 activation in circulating monocytes may contribute to the development of choroidal neovascularisation in AMD, and targeting the STAT3 pathway may have therapeutic potential in nAMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following allergen exposure, cytokines and other pro-inflammatory signals play an important role in the immunological cascade leading to allergic sensitization. Inflammasomes sense exogenous and endogenous danger signals and trigger IL-1β and IL-18 activation which in turn shape Th2 responses. Honey bee venom (BV) allergies are very common; however, the local inflammatory cascade leading to the initiation of allergic sensitization is poorly understood. In this study, the local inflammatory cascades in skin after exposure to BV were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human papillomaviruses (HPV) are double-stranded DNA viruses, which selectively infect keratinocytes in stratified epithelia. After an initial infection, many patients clear HPV. In some patients, however, HPV persist, and dysfunctional innate immune responses to HPV infection could be involved in the ineffective clearing of these viruses. In this study, the mechanisms of HPV-induced immune responses in keratinocytes were investigated. Binding of viral DNA leads to AIM2 inflammasome activation and IL-1β release, while IFI16 activation results in IFN-β release. Using immunohistochemistry, AIM2 and IFI16-two recently identified sensors for cytosolic DNA-were also detected in HPV positive skin lesions. CISH stainings further confirmed the presence of cytosolic HPV16 DNA in biopsy samples. Moreover, active IL-1β and cleaved caspase-1 were detected in HPV infected skin, suggesting inflammasome activation by viral DNA. In subsequent functional studies, HPV16 DNA triggered IL-1β and IL-18 release via the AIM2 inflammasome in normal human keratinocytes. Although HPV DNA did not induce IFN-β in keratinocytes, IFN-β secretion was observed when AIM2 was blocked. Meanwhile, blocking of IFI16 increased HPV16 DNA-induced IL-1β, but not IL-18, secretion. These findings suggest crosstalk between IFI16 and AIM2 in the immune response to HPV DNA. In sum, novel aspects concerning HPV-induced innate immune responses were identified. Eventually, understanding the mechanisms of HPV-induced inflammasome activation could lead to the development of novel strategies for the prevention and treatment of HPV infections.